This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Con

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Con


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


concatenate divisors: A037278*
concatenate prime factors: A037276*, A048595* (base 2)
concatenation of all numbers up through n, see here
concatenation: There is no universally accepted symbol for concatenation!

'a1 followed by a2' is used in A034821
a1 # a2 is used in A133344
a1 & a2 and a1 + a2 may also be used
a1 . a2 is used in A115437 (as in Perl)
a1 // a2 is used in A115429 (as in Fortran)
a1 : a2 is used in A089591
a1 U a2 is used in A165784
a1 ^ a2 is used in A091975 (cf. A091844)
a1a2 is used in A089710
a1_a2 is used in A153164
Maple uses parse(cat(a1, a2, ..., an))
Mathematica uses FromDigits[Join[IntegerDigits[a1], IntegerDigits[a2], ..., IntegerDigits[an]]] or ToExpression[StringJoin[ToString[a1], ToString[a2], ..., ToString[an]]] or FromDigits["a1"<>"a2"<>...<>"an"]
Pari uses eval(Str(a1, a2, ..., an)) or fromdigits(fold((x,y)->concat(x,y),apply(digits,[a1, a2, ..., an])))

conditionally convergent series: A002387, A092324, A092267, A092753
conference matrices: see matrices, conference

configurations , sequences related to :
configurations (combinatorial or geometrical): A001403*, A099999, A023994, A005787, A000698, A100001, A098702, A098804, A098822, A098841, A098851, A098852, A098854

Congruence property:: A002703, A002704, A002705
Congruences:: A001915, A001916
congruent mod 1 to 0 : A000004
congruent mod 10 :

to 0 (not) : A052382; to 0 : A008592, to 1 : A017281, to 2 : A017293, to 3 : A017305, to 4 : A017317, to 5 : A017329, to 6 : A017341, to 7 : A017353, to 8 : A017365, to 9 : A017377,
to {1, 7} : A131229, to {1, 9} : A090771, to {2, 8} : A090772, to {4, 6} : A090773

congruent mod 2 : to 0 (not) : A005408, to 0 : A005843, to 1 (not) : A005843, to 1 : A005408.

congruent mod 3 :

to 0 (not) : A001651, to 0 : A008585, to 1 (not) : A007494, to 1 : A016777, to 2 (not) : A032766, to 2 : A016789
to {0, 1} : A032766, to {0, 2} : A007494, to {1, 2} : A001651.

congruent mod 4 :

to 0 (not) : A042968, to 0 : A008586, to 1 (not) : A004772, to 1 : A016813, to 2 (not) : A042965, to 2 : A016825, to 3 (not) : A004773, to 3 : A004767,
to {0, 1, 2} : A004773, to {0, 1, 3} : A042965, to {0, 1} : A042948, to {0, 2, 3} : A004772, to {0, 3} : A014601, to {1, 2, 3} : A042968, to {1, 2} : A042963, to {2, 3} : A042964.

congruent mod 5 :

to 0 (not) : A047201, to 0 : A008587, to 1 (not) : A047203, to 1 : A016861, to 2 (not) : A047207, to 2 : A016873, to 3 (not) : A032769, to 3 : A016885, to 4 (not) : A001068, to 4 : A016897,
to {0, 1, 2, 3} : A001068, to {0, 1, 2, 4} : A032769, to {0, 1, 2} : A047217, to {0, 1, 3, 4} : A047207, to {0, 1, 3} : A047220, to {0, 1, 4} : A008854, to {0, 1} : A008851, to {0, 2, 3, 4} : A047203, to {0, 2, 3} : A047222, to {0, 2, 4} : A047212, to {0, 2} : A047215, to {0, 3, 4} : A047205, to {0, 3} : A047218, to {0, 4} : A047208,
to {1, 2, 3, 4} : A047201, to {1, 2, 3} : A047223, to {1, 2, 4} : A032793, to {1, 2} : A047216, to {1, 3, 4} : A047206, to {1, 3} : A047219, to {1, 4} : A047209, to {2, 3, 4} : A047202, to {2, 3} : A047221, to {2, 4} : A047211, to {3, 4} : A047204.

congruent mod 6 :

to 0 (not) : A047253, to 0 : A008588, to 1 (not) : A047248, to 1 : A016921, to 2 (not) : A047252, to 2 : A016933, to 3 (not) : A047263, to 3 : A016945, to 4 (not) : A047256, to 4 : A016957, to 5 (not) : A047226, to 5 : A016969,
to {0, 1, 2, 3, 4} : A047226, to {0, 1, 2, 3, 5} : A047256, to {0, 1, 2, 3} : A047246, to {0, 1, 2, 4, 5} : A047263, to {0, 1, 2, 4} : A047237, to {0, 1, 2, 5} : A047269, to {0, 1, 2} : A047240, to {0, 1, 3, 4, 5} : A047252, to {0, 1, 3, 5} : A047273, to {0, 1, 3} : A047242, to {0, 1, 4, 5} : A047260, to {0, 1, 4} : A047234, to {0, 1, 5} : A047266, to {0, 1} : A047225,
to {0, 2, 3, 4, 5} : A047248, to {0, 2, 3, 4} : A047229, to {0, 2, 3} : A047244, to {0, 2, 4, 5} : A047262, to {0, 2, 5} : A047267, to {0, 2} : A047238, to {0, 3, 4, 5} : A047250, to {0, 3, 4} : A047231, to {0, 3, 5} : A047271, to {0, 4, 5} : A047258, to {0, 4} : A047233, to {0, 5} : A047264,
to {1, 2, 3, 4, 5} : A047248, to {1, 2, 3, 4} : A031477, to {1, 2, 3, 5} : A047255, to {1, 2, 3} : A047245, to {1, 2, 4} : A047236, to {1, 2, 5} : A047268, to {1, 2} : A047239, to {1, 3, 4, 5} : A047251, to {1, 3, 4} : A029739, to {1, 3} : A047241, to {1, 4, 5} : A047259, to {1, 5} : A007310,
to {2, 3, 4, 5} : A047247, to {2, 3, 4} : A047228, to {2, 3, 5} : A047254, to {2, 3} : A047243, to {2, 4, 5} : A047261, to {2, 4} : A047235, to {3, 4, 5} : A047249, to {3, 4} : A047230, to {3, 5} : A047270, to {4, 5} : A047257

congruent mod 7:

to 0 (not) : A047304, to 0 : A008589, to 1 (not) : A047306, to 1 : A016993, to 2 (not) : A047310, to 2 : A017005, to 3 (not) : A047318, to 3 : A017017, to 4 (not) : A032775, to 4 : A017029, to 5 (not) : A047303, to 5 : A017041, to 6 (not) : A047368, to 6 : A017053,
to {0, 1, 2, 3, 4, 5} : A047368, to {0, 1, 2, 3, 4, 6} : A047303, to {0, 1, 2, 3, 4} : A047337, to {0, 1, 2, 3, 5, 6} : A032775, to {0, 1, 2, 3, 5} : A047373, to {0, 1, 2, 3, 6} : A047287, to {0, 1, 2, 3} : A047361, to {0, 1, 2, 4, 5, 6} : A047318, to {0, 1, 2, 4, 5} : A047381, to {0, 1, 2, 4, 6} : A047295, to {0, 1, 2, 4} : A047351, to {0, 1, 2, 5, 6} : A047326, to {0, 1, 2, 5} : A047388, to {0, 1, 2, 6} : A047279, to {0, 1, 2} : A047354,
to {0, 1, 3, 4, 5, 6} : A047310, to {0, 1, 3, 4, 5} : A047367, to {0, 1, 3, 4, 6} : A047299, to {0, 1, 3, 4} : A047344, to {0, 1, 3, 5, 6} : A047330, to {0, 1, 3, 5} : A047392, to {0, 1, 3, 6} : A047283, to {0, 1, 3} : A047357, to {0, 1, 4, 5, 6} : A047314, to {0, 1, 4, 5} : A047377, to {0, 1, 4, 6} : A047291, to {0, 1, 4} : A047347, to {0, 1, 5, 6} : A047322, to {0, 1, 5} : A047384, to {0, 1, 6} : A047275, to {0, 1} : A047274,
to {0, 2, 3, 4, 5, 6} : A047306, to {0, 2, 3, 4, 5} : A047363, to {0, 2, 3, 4, 6} : A047301, to {0, 2, 3, 4} : A047340, to {0, 2, 3, 5, 6} : A047332, to {0, 2, 3, 5} : A047371, to {0, 2, 3, 6} : A047285, to {0, 2, 3} : A047359,
to {0, 2, 4, 5, 6} : A047316, to {0, 2, 4, 5} : A047379, to {0, 2, 4, 6} : A047293, to {0, 2, 4} : A047349, to {0, 2, 5, 6} : A047324, to {0, 2, 5} : A047386, to {0, 2, 6} : A047277, to {0, 2} : A047352,
to {0, 3, 4, 5, 6} : A047308, to {0, 3, 4, 5} : A047365, to {0, 3, 4, 6} : A047297, to {0, 3, 4} : A047342, to {0, 3, 5, 6} : A047328, to {0, 3, 5} : A047390, to {0, 3, 6} : A047281, to {0, 3} : A047355, to {0, 4, 5, 6} : A047312, to {0, 4, 5} : A047375, to {0, 4, 6} : A047289, to {0, 4} : A047345, to {0, 5, 6} : A047320, to {0, 5} : A047382, to {0, 6} : A047335,
to {1, 2, 3, 4, 5, 6} : A047304, to {1, 2, 3, 4, 5} : A047369, to {1, 2, 3, 4, 6} : A047302, to {1, 2, 3, 4} : A047338, to {1, 2, 3, 5, 6} : A032796, to {1, 2, 3, 5} : A047372, to {1, 2, 3, 6} : A047286, to {1, 2, 3} : A047360, to {1, 2, 4, 5, 6} : A047317, to {1, 2, 4, 5} : A047380, to {1, 2, 4, 6} : A047294, to {1, 2, 4} : A047350, to {1, 2, 5, 6} : A047325, to {1, 2, 5} : A047387, to {1, 2, 6} : A047278, to {1, 2} : A047353,
to {1, 3, 4, 5, 6} : A047309, to {1, 3, 4, 5} : A047366, to {1, 3, 4, 6} : A047298, to {1, 3, 4} : A047343, to {1, 3, 5, 6} : A047329, to {1, 3, 5} : A047391, to {1, 3, 6} : A047282, to {1, 3} : A047356, to {1, 4, 5, 6} : A047313, to {1, 4, 5} : A047376, to {1, 4, 6} : A047290, to {1, 4} : A047346, to {1, 5, 6} : A047321, to {1, 5} : A047383, to {1, 6} : A047336,
to {2, 3, 4, 5, 6} : A047305, to {2, 3, 4, 5} : A047362, to {2, 3, 4, 6} : A047300, to {2, 3, 4} : A047339, to {2, 3, 5, 6} : A047331, to {2, 3, 5} : A047370, to {2, 3, 6} : A047284, to {2, 3} : A047358, to {2, 4, 5, 6} : A047315, to {2, 4, 5} : A047378, to {2, 4, 6} : A047292, to {2, 4} : A047348, to {2, 5, 6} : A047323, to {2, 5} : A047385, to {2, 6} : A047276,
to {3, 4, 5, 6} : A047307, to {3, 4, 5} : A047364, to {3, 4, 6} : A047296, to {3, 4} : A047341, to {3, 5, 6} : A047327, to {3, 5} : A047389, to {3, 6} : A047280, to {4, 5, 6} : A047311, to {4, 5} : A047374, to {4, 6} : A047288, to {5, 6} : A047319.

congruent mod 8 :

to 0 (not) : A047592, to 0 : A008590, to 1 (not) : A047594, to 1 : A017077, to 2 (not) : A047565, to 2 : A017089, to 3 (not) : A047573, to 3 : A017101, to 4 (not) : A047588, to 4 : A017113, to 5 (not) : A004776, to 5 : A004770, to 6 (not) : A047595, to 6 : A017137, to 7 (not) : A004777, to 7 : A004771;
to {0, 1, 2, 3, 4, 5, 6} : A004777, to {0, 1, 2, 3, 4, 5, 7} : A047595, to {0, 1, 2, 3, 4, 5} : A047602, to {0, 1, 2, 3, 4, 6, 7} : A004776, to {0, 1, 2, 3, 4, 6} : A047420, to {0, 1, 2, 3, 4, 7} : A047549, to {0, 1, 2, 3, 4} : A047453, to {0, 1, 2, 3, 5, 6, 7} : A047588, to {0, 1, 2, 3, 5, 6} : A047450, to {0, 1, 2, 3, 5, 7} : A047490, to {0, 1, 2, 3, 5} : A047607, to {0, 1, 2, 3, 6, 7} : A047505, to {0, 1, 2, 3, 6} : A047405, to {0, 1, 2, 3, 7} : A047534, to {0, 1, 2, 3} : A047476,
to {0, 1, 2, 4, 5, 6, 7} : A047573, to {0, 1, 2, 4, 5, 7} : A047498, to {0, 1, 2, 4, 5} : A047614, to {0, 1, 2, 4, 6, 7} : A047513, to {0, 1, 2, 4, 6} : A047412, to {0, 1, 2, 4, 7} : A047542, to {0, 1, 2, 4} : A047466, to {0, 1, 2, 5, 6, 7} : A047581, to {0, 1, 2, 5, 6} : A047442, to {0, 1, 2, 5, 7} : A047483, to {0, 1, 2, 5} : A047620, to {0, 1, 2, 6, 7} : A047555, to {0, 1, 2, 6} : A047397, to {0, 1, 2, 7} : A047527, to {0, 1, 2} : A047469,
to {0, 1, 3, 4, 5, 6, 7} : A047565, to {0, 1, 3, 4, 5, 6} : A047428, to {0, 1, 3, 4, 5} : A047601, to {0, 1, 3, 4, 6, 7} : A047517, to {0, 1, 3, 4, 6} : A047416, to {0, 1, 3, 4, 7} : A047545, to {0, 1, 3, 4} : A047460, to {0, 1, 3, 5, 6, 7} : A047585, to {0, 1, 3, 5, 6} : A047446, to {0, 1, 3, 5, 7} : A047486, to {0, 1, 3, 5} : A047624, to {0, 1, 3, 6, 7} : A047559, to {0, 1, 3, 6} : A047401, to {0, 1, 3, 7} : A047530, to {0, 1, 3} : A047472,
to {0, 1, 4, 5, 6, 7} : A047569, to {0, 1, 4, 5, 6} : A047432, to {0, 1, 4, 5, 7} : A047494, to {0, 1, 4, 6, 7} : A047509, to {0, 1, 4, 6} : A047409, to {0, 1, 4, 7} : A047538, to {0, 1, 4} : A047462, to {0, 1, 5, 6, 7} : A047577, to {0, 1, 5, 6} : A047439, to {0, 1, 5, 7} : A047479, to {0, 1, 5} : A047616, to {0, 1, 6, 7} : A047551, to {0, 1, 6} : A047394, to {0, 1, 7} : A047523, to {0, 1} : A047393,
to {0, 2, 3, 4, 5, 6, 7} : A047594, to {0, 2, 3, 4, 5, 6} : A047424, to {0, 2, 3, 4, 5, 7} : A047503, to {0, 2, 3, 4, 5} : A047597, to {0, 2, 3, 4, 6} : A047418, to {0, 2, 3, 4, 7} : A047547, to {0, 2, 3, 4} : A047456, to {0, 2, 3, 5, 6, 7} : A047587, to {0, 2, 3, 5, 6} : A047448, to {0, 2, 3, 5, 7} : A047488, to {0, 2, 3, 5} : A047605, to {0, 2, 3, 6, 7} : A047560, to {0, 2, 3, 6} : A047403, to {0, 2, 3, 7} : A047532, to {0, 2, 3} : A047474,
to {0, 2, 4, 5, 6, 7} : A047571, to {0, 2, 4, 5, 6} : A047434, to {0, 2, 4, 5, 7} : A047496, to {0, 2, 4, 5} : A047612, to {0, 2, 4, 6, 7} : A047511, to {0, 2, 4, 7} : A047540, to {0, 2, 4} : A047464, to {0, 2, 5, 6, 7} : A047579, to {0, 2, 5, 6} : A047441, to {0, 2, 5, 7} : A047481, to {0, 2, 5} : A047618, to {0, 2, 6, 7} : A047553, to {0, 2, 6} : A047395, to {0, 2, 7} : A047525, to {0, 2} : A047467,
to {0, 3, 4, 5, 6, 7} : A047563, to {0, 3, 4, 5, 6} : A047426, to {0, 3, 4, 5, 7} : A047500, to {0, 3, 4, 5} : A047599, to {0, 3, 4, 6, 7} : A047515, to {0, 3, 4, 6} : A047414, to {0, 3, 4} : A047458, to {0, 3, 5, 6, 7} : A047583, to {0, 3, 5, 6} : A047444, to {0, 3, 5} : A047622, to {0, 3, 6, 7} : A047557, to {0, 3, 6} : A047399, to {0, 3, 7} : A047528, to {0, 3} : A047470,
to {0, 4, 5, 6, 7} : A047567, to {0, 4, 5, 6} : A047430, to {0, 4, 5, 7} : A047492, to {0, 4, 5} : A047609, to {0, 4, 6, 7} : A047507, to {0, 4, 6} : A047407, to {0, 4, 7} : A047536, to {0, 5, 6, 7} : A047575, to {0, 5, 6} : A047437, to {0, 5, 7} : A047477, to {0, 5} : A047615, to {0, 6, 7} : A047590, to {0, 6} : A047451, to {0, 7} : A047521,
to {1, 2, 3, 4, 5, 6, 7} : A047592, to {1, 2, 3, 4, 5, 6} : A047422, to {1, 2, 3, 4, 5, 7} : A047504, to {1, 2, 3, 4, 5} : A047603, to {1, 2, 3, 4, 6, 7} : A047519, to {1, 2, 3, 4, 6} : A047419, to {1, 2, 3, 4, 7} : A047449, to {1, 2, 3, 4, 7} : A047548, to {1, 2, 3, 4} : A047454, to {1, 2, 3, 5, 7} : A047489, to {1, 2, 3, 5} : A047606, to {1, 2, 3, 6, 7} : A047561, to {1, 2, 3, 6} : A047404, to {1, 2, 3, 7} : A047533, to {1, 2, 3} : A047475,
to {1, 2, 4, 5, 6, 7} : A047572, to {1, 2, 4, 5, 6} : A047435, to {1, 2, 4, 5, 7} : A047497, to {1, 2, 4, 5} : A047613, to {1, 2, 4, 6, 7} : A047512, to {1, 2, 4, 6} : A047411, to {1, 2, 4, 7} : A047541, to {1, 2, 4} : A047465, to {1, 2, 5, 6, 7} : A047580, to {1, 2, 5, 7} : A047482, to {1, 2, 5} : A047619, to {1, 2, 6, 7} : A047554, to {1, 2, 6} : A047396, to {1, 2, 7} : A047526, to {1, 2} : A047468,
to {1, 3, 4, 5, 6, 7} : A047564, to {1, 3, 4, 5, 6} : A047427, to {1, 3, 4, 5, 7} : A047501, to {1, 3, 4, 5} : A047600, to {1, 3, 4, 6, 7} : A047516, to {1, 3, 4, 6} : A047415, to {1, 3, 4, 7} : A047544, to {1, 3, 4} : A047459, to {1, 3, 5, 6, 7} : A047584, to {1, 3, 5, 6} : A047445, to {1, 3, 5} : A047623, to {1, 3, 6, 7} : A047558, to {1, 3, 6} : A047400, to {1, 3, 7} : A047529, to {1, 3} : A047471,
to {1, 4, 5, 6, 7} : A047568, to {1, 4, 5, 6} : A047431, to {1, 4, 5, 7} : A047493, to {1, 4, 5} : A047610, to {1, 4, 6, 7} : A047508, to {1, 4, 6} : A047408, to {1, 4, 7} : A047537, to {1, 4} : A047461,
to {1, 5, 6, 7} : A047576, to {1, 5, 6} : A047438, to {1, 5, 7} : A047478, to {1, 6, 7} : A047591, to {1, 6} : A047452, to {1, 7} : A047522,
to {2, 3, 4, 5, 6, 7} : A047593, to {2, 3, 4, 5, 6} : A047423, to {2, 3, 4, 5, 7} : A047502, to {2, 3, 4, 5} : A047596, to {2, 3, 4, 6, 7} : A047518, to {2, 3, 4, 6} : A047417, to {2, 3, 4, 7} : A047546, to {2, 3, 4} : A047455,
to {2, 3, 5, 6, 7} : A047586, to {2, 3, 5, 6} : A047447, to {2, 3, 5, 7} : A047487, to {2, 3, 5} : A047604, to {2, 3, 6} : A047402, to {2, 3, 7} : A047531, to {2, 3} : A047473,
to {2, 4, 5, 6, 7} : A047570, to {2, 4, 5, 6} : A047433, to {2, 4, 5, 7} : A047495, to {2, 4, 5} : A047611, to {2, 4, 6, 7} : A047510, to {2, 4, 6} : A047410, to {2, 4, 7} : A047539, to {2, 4} : A047463,: to {2, 5, 6, 7} : A047578, to {2, 5, 6} : A047440, to {2, 5, 7} : A047480, to {2, 5} : A047617, to {2, 6, 7} : A047552, to {2, 7} : A047524,
to {3, 4, 5, 6, 7} : A047562, to {3, 4, 5, 6} : A047425, to {3, 4, 5, 7} : A047499, to {3, 4, 5} : A047598, to {3, 4, 6, 7} : A047514, to {3, 4, 6} : A047413, to {3, 4, 7} : A047543, to {3, 4} : A047457, to {3, 5, 6, 7} : A047582, to {3, 5, 6} : A047443, to {3, 5, 7} : A047484, to {3, 5} : A047621, to {3, 6, 7} : A047556, to {3, 6} : A047398,
to {4, 5, 6, 7} : A047566, to {4, 5, 6} : A047429, to {4, 5, 7} : A047491, to {4, 5} : A047608, to {4, 6, 7} : A047506, to {4, 6} : A047406, to {4, 7} : A047535,
to {5, 6, 7} : A047574, to {5, 6} : A047436, to {5, 7} : A047550, to {6, 7} : A047589.

congruent mod 9:

to 0 (not) : A168183, to 0 : A008591, to 1 : A017173, to 2 : A017185, to 3 : A017197, to 4 : A017209, to 5 : A017221, to 6 : A017233, to 7 : A017245, to 8 : A017257,
to {0, 1, 2, 3, 6, 7, 8} : A060464, to {0, 1} : A090570, to {0, 2, 5, 8} : A174438, to {1, 4, 5, 8} : A174396, to {1, 8} : A056020, to {2, 4, 5, 7} : A056527, to {2, 7} : A063289, to {3, 6} : A016051, to {4, 5} : A156638, to {4, 7} : A125758.

congruent numbers: A003273*, A006991, A016090

congruent products between domains N and GF(2)[X] , sequences defined by  :
congruent products between domains N and GF(2)[X], Here * stands for ordinary multiplication (A004247), and X means carryless GF(2)[X] multiplication (A048720))
congruent products between domains N and GF(2)[X], 3*n = 3Xn (A003714), 3*n = 7Xn (A048717), 3*n = 7Xn and 5*n = 5Xn (A048719)
congruent products between domains N and GF(2)[X], 5*n = 5Xn (A048716), 7*n = 7Xn (A048715), 7*n = 11Xn (A115770)
congruent products between domains N and GF(2)[X], 9*n = 9Xn (A115845), 9*n = 25Xn (A115801), 9*n = 25Xn, but 17*n is not 49Xn (A115811)
congruent products between domains N and GF(2)[X], 11*n = 31Xn (A115803), 13*n = 21Xn (A115772), 13*n = 29Xn (A115805)
congruent products between domains N and GF(2)[X], 15*n = 15Xn (A048718), 15*n = 23Xn (A115774), 15*n = 27Xn (A115807)
congruent products between domains N and GF(2)[X], 17*n = 17Xn (A115847), 17*n = 49Xn (A115809), 19*n = 55Xn (A115874)
congruent products between domains N and GF(2)[X], 21*n = 21Xn (A115422), 31*n = 31Xn (A115423), 33*n = 33Xn (A114086)
congruent products between domains N and GF(2)[X], 41*n = 105Xn (A115876), 49*n = 81Xn (A114384), 57*n = 73Xn (A114386)
congruent products between domains N and GF(2)[X], 63*n = 63Xn (A115424)
congruent products between domains N and GF(2)[X], array of solutions for n*k = A065621(n) X k: A115872
congruent products between domains N and GF(2)[X], see also A115857, A115871
congruent products between domains N and GF(2)[X]: see also congruent products under XOR

congruent products under XOR , sequences defined by  :
congruent products under XOR, 3*n = 2*n XOR n (A003714), 5*n = 4*n XOR n (A048716), 5*n = 3*n XOR 2*n (A115767)
congruent products under XOR, 7*n = 6*n XOR n (A048715), 7*n = 5*n XOR 2*n (A115813), 7*n = 4*n XOR 3*n (A048715)
congruent products under XOR, 11*n = 10*n XOR n (A115793), 11*n = 9*n XOR 2*n (A115795), 11*n = 8*n XOR 3*n (A115797)
congruent products under XOR, 11*n = 7*n XOR 4*n (A115799), 11*n = 6*n XOR 5*n (A115827), 15*n = 14*n XOR n (A048718)
congruent products under XOR, 17*n = 16*n XOR n (A115847), 17*n = 13*n XOR 4*n (A115817), 19*n = 15*n XOR 4*n (A115819)
congruent products under XOR, 21*n = 20*n XOR n (A115422), 21*n = 15*n XOR 6*n (A115821), 21*n = 11*n XOR 10*n (A115829)
congruent products under XOR, 23*n = 13*n XOR 8*n (A115823), 25*n = 16*n XOR 9*n (A115831), 33*n = 17*n XOR 16*n (A115833)
congruent products under XOR, 31*n = 30*n XOR n (A115423), 33*n = 32*n XOR n (A114086), 63*n = 62*n XOR n (A115424)
congruent products under XOR, 9*n = 8*n XOR n (A115845), 9*n = 7*n XOR 2*n (A115815)
congruent products under XOR, least k such that n XOR n*2^k = n*(2^k + 1), A116361
congruent products under XOR: see also congruent products between domains N and GF(2)[X]

conjecture, sequences related to various conjectures :
conjecture, curling number: A094004
conjectured formulas: see A005158, A005160, A005162, A005163, A005164 (there are conjectured formulas for these sequences which may still be open problems)
conjectured sequences (00): The following sequences contain one or more terms that are only conjectured values
conjectured sequences (01): In some cases the conjectured terms are only mentioned in the comments
conjectured sequences (02): This list was last revised Jun 19 2008. It is surely incomplete, and by the time you look at them their status may have changed
conjectured sequences (03): Suggestions for additions to or deletions from this list will be welcomed - njasloane@gmail.com
conjectured sequences (04): A008892, A098007, A063769 and other sequences related to the "aliquot divisors" problem
conjectured sequences (05): A065083, A090315, A104885, A121091, A051346, A115016
conjectured sequences (06): A075788, A075789, A075790, A075791, A083435, A086548, A087318, A087319, A088126, A090315, A092959
conjectured sequences (07): A000373, A002149, A014595, A014596, A019450, A019459, A020999,
conjectured sequences (08): A022495-A022498, A023054, A023108, A038552, A046125, A052131,
conjectured sequences (09): A066426, A066435, A066450, A066510, A066746, A066817, A067579,
conjectured sequences (10): A068591, A071071, A071887, A072023, A072326, A072540, A074980,
conjectured sequences (11): A074981, A078693, A078754, A078869, A079098, A079398, A079611,
conjectured sequences (12): A080131, A080133, A080134, A080761, A080762, A085508, A086058,
conjectured sequences (13): A086748, A087092, A088910, A091305, A092372-A092382, A096340,
conjectured sequences (14): A098860, A099118, A099119, A105233, A105600, A105601, A108795,
conjectured sequences (15): A110000, A110108, A110172, A110222, A110223, A110312, A110356,
conjectured sequences (16): A112647, A112799, A112826, A118278-A118285, A120414*, A121069,
conjectured sequences (17): A121346, A121507, A121508, A119479, A009287, A090997, A090987,
conjectured sequences (18): A004137, A048873, A056287, A059813, A059817, A059818, A065106, A065107, A081082, A084619, A090659, A099260, A117342,
conjectured sequences (19): A000954, A000974, A007008 (?), A023189-A023193, A036462-A036463, A037018, A039508, A039515, A051522, A056636, A076853, A105170, A118371
conjectured sequences (20): A080803, A124484, A093486, A140394, A007323, A027687, A046060, A046061
conjectured sequences (21): sequences where the terms are only conjecturally correct, but there is no proof so far: A020497, A020665, A023108, A051021, A074981, A076335, A094004, A101036, A118278, A134162, A216063, A226613, A226629, A236321, A237880, A293142
conjectures: see also Artin's conjecture
conjectures: see also Catalan's conjecture
conjectures: see also Chvatal conjecture
conjectures: see also Collatz or 3x+1 problem
conjectures: see also complete graph conjecture
conjectures: see also curling number conjecture
conjectures: see also Gilbreath's conjecture
conjectures: see also Goldbach conjecture
conjectures: see also Heawood conjecture
conjectures: see also Kummer's conjecture
conjectures: see also Legendre's conjecture
conjectures: see also Mertens's conjecture
conjectures: see also permutations of the integers, conjectured
conjectures: see also Polya's conjecture
conjectures: see also Riemann Hypothesis
conjectures: see also 3x+1 or Collatz problem
conjectures: see also sequences that need extending

conjugacy classes of groups: see groups, conjugacy classes
Conn, Herb, sums involving 1/binomial(2n,n): A098830+A181334+A185585, A014307+A180875, A181374+A185672
connect the dots: A187679
connected graphs, see graphs, connected
connected regular graphs, see graphs, regular connected
connecting 2n points: A006605
Connell sequence: A001614*
Consecutive:: A002308, A001223, A007610, A002307, A007513, A000236, A007667, A006889, A001033, A006055
Consistent:: A005779, A001225

constants, sequences related to :

constant primes (= primes of the form floor(const*10^k)):

A005042 (π = Pi), A007512 (e = exp(1)), A072952 (gamma), A064117 (golden ratio Phi), A115453 (sqrt(2)), A119343 (sqrt(3)), A118329 (Catalan's constant), A119333 (Apéry's constant zeta(3)), A176942 (Champernowne constant), A118419 (Glaisher-Kinkelin constant), A122422 (Soldner's constant), A174975 (Golomb-Dickman constant lambda), A210704 (3^(1/3)), A227529 (Copeland-Erdős constant), A228241 (ln(10)).

constant sequences: (periodic sequences with period length 1, also linear recurrences of order 1 with signature (1))

A000004(n) = 0, A000012(n) = 1, A007395(n) = 2, A010701(n) = 3, A010709(n) = 4, A010716 = 5, A010722 = 6, A010727 = 7, A010731 = 8, A010734 = 9, A010692(n) = 10, A010850 = 11, A010851, A010852, A010853, A010854 = 15, A010855, A010856, A010857, A010858, A010859 = 20, A010860, A010861, A010862, A010863, A010864 = 25, A010865, A010866, A010867, A010868, A010869 = 30, A010870, A010871 = 32
eventually constant:
eventually 0: A000007 (0^n: 1,0,0,...), A063524 (0,1,0,0,...), A159075 (0,-1,0,0,...), A020761 (1/2 = .5000...), A003245, A008461, ...
(includes the characteristic function of any finite set: A000007: {0}, A063524: {1}, A178333: mountain numbers {1, 121, 131, ..., 12...9...21}, ...)
eventually +-1: A057427 (sgn(n): 0, 1, 1,...), A057428 (sgn(-n): 0, -1, -1,...), A060576 (1,0,1,1,1...), A157928 (0,0,1,1,...)
(includes the characteristic function of any co-finite set, as, e.g., the 1st, 3rd and 4th example above, which equal 1 - the characteristic function of the finite sets {0}, {1}, {0,1}.)
of the form (a,2a,2a,2a,...) = continued fraction of sqrt(a²+1): A040000 (a=1), A040002 (a=2), A040006 (a=3), A040012 (a=4), A040020 (a=5), A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(122) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)),
A021040 (0,2,7,7,...), A035613 (7 in base n), A255910 (16/9 = 1.77777),
A036058 (describe previous term: 0,10,1110,...), A056064 (1,2,...,39,39,...), A060296, A063524, A100401, A100476, A101101 (1,5,6,6,...), A101104 (1,12,23,24,24...), A108692, A112667, A113311, A115291, A122553, A123932, A128999, A129810 (9^9^9 mod n), A130130, A130779, A134824, A137261, A141044, A153881, A159075, A171386, A171418, A171440, A171441, A171442, A171443, A177022, A181402, A181404, A185437, A186684, A189071, A214128 (6^6^6 mod n), A244328, A255176, A260196, A261012, A267884, A278105, A291092

constants, decimal expansion of: e A001113, gamma A001620, golden ratio A001622, pi A000796, silver mean A014176, Robbins constant A073012

see also: constant primes (= primes of the form floor(const*10^k)).

constructing numbers from other numbers and the operations of addition, subtraction, etc: see under four 4's problem
contexts: A047684
CONTINUANT transform: see Transforms file
continuant: A072347

continued cotangents, sequences related to :
continued cotangents:: A002668, A006266, A006268, A002667, A006267, A002666, A006269

continued fractions , sequences related to :
continued fractions (1):: A003285, A006466, A002951, A003417, A002852, A002211, A006083, A006839, A002947, A002948
continued fractions (2):: A002946, A001685, A001686, A004200, A002665, A006271, A001684, A006085, A002945, A007515
continued fractions (3):: A002937, A001112, A006464, A003118, A001203, A006273, A006270, A002949, A006467, A003117
continued fractions (4):: A006221, A002950, A001204, A006084, A005483, A006518, A005147, A006272, A006274, A005146, A006465
continued fractions for constants: (2/Pi)*Integral(sin(x)/x, x=0..Pi) (A036791), 0.12112111211112... A042974 (A056030) Product_{k>=1} (1-1/2^k) (A048652)
continued fractions for constants: 2^(1/2) etc.: see below under: continued fractions for constants: square roots of 2, etc.
continued fractions for constants: 2^(1/3) (A002945), 3^(1/3) (A002946), 4^(1/3) (A002947), 5^(1/3) (A002948), 6^(1/3) (A002949), 7^(1/3) (A005483), cube root of non-cubes 9+n to 100 (A010239, A010240, etc)
continued fractions for constants: 2^(1/3)+sqrt(3) (A039923), BesselK(1,2)/BesselK(0,2) (A051149), Catalan's constant (A014538)
continued fractions for constants: 2^(1/5) (A002950), 3^(1/5) (A003117), 4^(1/5) (A003118), 5^(1/5) (A002951)
continued fractions for constants: Champernowne (A030167), Conway's (A014967), Copeland-Erdos (A030168), Euler's gamma (A002852)
continued fractions for constants: e (A003417), e/2 (A006083), e/3 (A006084), e/4 (A006085), e^2 (A001204), e^3 (A058282)
continued fractions for constants: e^Pi (A058287), e^pi - pi (A018939), (e+1)/3 (A028360), (e-1)/(e+1) (A016825), i^i = exp(-Pi/2) (A049007)
continued fractions for constants: Fransen-Robinson (A046943), GAMMA(1/3) (A030651), GAMMA(2/3) (A030652), Integral(sin(x)/x, x=0..Pi) (A036790)
continued fractions for constants: golden ratio (A000012)
continued fractions for constants: Khintchine's (A002211), LambertW(1) (A030179), Lehmer's (A002665), Liouville's A012245 (A058304), Niven's (A033151)
continued fractions for constants: ln(2+n) to ln(100) (A016730+n), ln((2n+1)/2) to ln(99/2) (A016528+n)
continued fractions for constants: M(1,sqrt(2)) (A053003), 1 / M(1,sqrt(2)) (A053002), 1 +1/(e +1/(e^2 +..)) (A055972), 2*cos(2*Pi/7) (A039921)
continued fractions for constants: Otter's rooted tree A000081 (A051492), Thue-Morse (A014572), Tribonacci constant (A019712, A058296)
continued fractions for constants: Pi (A001203), 2 Pi (A058291), Pi/2 (A053300), Pi^2 (A058284), Pi^e (A058288), pi+e (A058651)
continued fractions for constants: sqrt(2Pi) (A058293), sqrt(Pi) (A058280), sqrt(e) (A058281)
continued fractions for constants: sqrt(3) - 1: A134451, A048878/A002530
continued fractions for constants: sqrt(n): see Index to continued fractions for sqrt(n)
continued fractions for constants: Sum_{n>=0} 1/2^(2^n) (A007400), Sum_{k>=2} 2^(-Fibonacci(k)) (A006518), Sum_{m>=0} 1/(2^2^m - 1) (A048650)
continued fractions for constants: tan(1) (A009001), tan(1/n) n=2 to 10 (A019423+n)
continued fractions for constants: Trott's (A039663), Wallis' number (A058297), Wirsing's (A007515), prime constant (A051007), root of x^5-x-1 (A039922)
continued fractions for constants: zeta(2) = Pi^2/6 (A013679), zeta(3) (A013631), zeta(4) (A013680)
continued fractions, for sqrt(n), length of period: A003285*, A097853

contours: A006021
convenient numbers: A000926
conventions in OEIS: see spelling and notation

convergents , sequences related to :
convergents (1):: A002363, A007676, A002356, A005663, A006279, A002355, A005664, A002358, A002795, A002353, A002360, A007509, A005484, A002364
convergents (2):: A007677, A002351, A002357, A002354, A002794, A001517, A002485, A002352, A002359, A002361, A005668, A002362, A002119, A002486, A005485

convert from base 10 to base n (or vice versa): A006937, A023372, A023378, A023383, A023387, A023390, A008557, A023392, A010692
convert from decimal to binary: A006937, A006938
convex lattice polygons: A063984, A070911, A089187

convolution , sequences related to :
convolution of natural numbers :: A007466
convolution of triangular numbers :: A007465
Convolutional codes:: A007223, A007224, A007225, A007227, A007226, A007228, A007229
Convolutions:: A007477, A006013, A001938, A000385, A005798, A007556
Convolved Fibonacci numbers:: A001629, A001628, A001872, A001873, A001874, A001875

Conway , sequences related to :
Conway group Con.0: A008924
Conway sequences:: A007012, A004001, A005940, A005941, A003681, A007542, A007471, A003634, A007547, A003635
Conway, sequences made famous by: A004001*, A005150*
Conway-Guy rapidly growing sequence: A046859
Conway-Guy sequence: A005318*, A006755, A006368*, A006754, A006756, A006757

coordinates of 2D curves , sequences related to :
Alternate paperfolding curve: A020986-A020990
Counterclockwise spiral on an hexagonal grid: A328818-A307012
Dragon curve: A332383-A332384
Fibonacci word fractal: A332298-A332299
Gosper curve: A334485-A334486
Hilbert curve: A059252-A059253
Hilbert's type II Hamiltonian walk: A163528-A163529
H-order curve: A334233-A334234 and A334235-A334236
Koch curve: A332204-A332205, A335358-A335359
Kochawave curve: A335380-A335381
Lattice bijection (Pi/6) curve: A307446-A307447
Lévy C curve: A332251-A332252
Midpoint curve of the alternate paperfolding curve: A334576-A334577
Minkowski curve: A332246-A332247
Peano curve: A332380-A332381
Quadratic Koch curve: A332249-A332250
Sierpinski arrowhead curve: A334483-A334484
Square spiral: A174344-A274923
Wunderlich curve: A323258-A323259
Z-order curve: A059905-A059906

coordination sequences, sequences related to :
coordination sequences: Note that as of January 2020 there are about 14000 coordination sequences in the OEIS
coordination sequences: A_n root lattices: A005901, A008383, A008385, A008387, A008389, A008391, A008393, A008395, and A035837 through A035876
coordination sequences: aperiodic tilings: A103906, A103907, A302176, A302841, A302842 (Penrose); A303981 (Octagonal or Ammann-Beenker); A304050 (Half-hex); A304076 (Chair), A304910 (Pinwheel).
coordination sequences: Archimedean polyhedra: A161425, A161496, A162495, A298808, A298809, A32950, A330555, A331052, A331053; see also Polyhedron Coordination Sequences
coordination sequences: B_n root lattices: A022144 through A022154, A107546 through A107571, and A108000 through A108011
coordination sequences: Buckyball: A329500
coordination sequences: C_n root lattices: A010006, A019560 through A019564, and A035746 through A035787
coordination sequences: Catalan polyhedra: A329770, A329772, A330564, A331054, A331055, A331056, A331057, A331058, A331059, A331060, A331061, A331062, A331063, A331064, A331065, A331066, A331067, A331068, A331069, A331070; see also Polyhedron Coordination Sequences
coordination sequences: D_n root lattices: A005901, A007900, A008355, A008357, A008359, A008361, A008376, A008378, and A107506 through A107545
coordination sequences: 11 Laves tilings (i.e. duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
coordination sequences: Platonic solids: see Polyhedron Coordination Sequences
coordination sequences: stellated polyhedra: A330566, A330567, A330568
coordination sequences: 11 uniform planar nets (i.e. 2D Archimedean tilings): A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
coordination sequences: 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A361684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 krc A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.
coordination sequences: 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202.
coordination sequences: see also crystal ball sequences
coordination sequences: see also under names of individual lattices

Coprime sequences:: A003139, A003140, A002716, A002715


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]