This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Con

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Con


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


concatenate divisors: A037278*
concatenate prime factors: A037276*, A048595* (base 2)
concatenation of all numbers up through n, see here
concatenation: There is no universally accepted symbol for concatenation!

'a1 followed by a2' is used in A034821
a1 # a2 is used in A133344
a1 & a2 and a1 + a2 may also be used
a1 . a2 is used in A115437 (as in Perl)
a1 // a2 is used in A115429 (as in Fortran)
a1 : a2 is used in A089591
a1 U a2 is used in A165784
a1 ^ a2 is used in A091975 (cf. A091844)
a1a2 is used in A089710
a1_a2 is used in A153164
Maple uses parse(cat(a1, a2, ..., an))
Mathematica uses FromDigits[Join[IntegerDigits[a1], IntegerDigits[a2], ..., IntegerDigits[an]]] or ToExpression[StringJoin[ToString[a1], ToString[a2], ..., ToString[an]]] or FromDigits["a1"<>"a2"<>...<>"an"]
Pari uses eval(Str(a1, a2, ..., an)) or fromdigits(fold((x,y)->concat(x,y),apply(digits,[a1, a2, ..., an])))

conditionally convergent series: A002387, A092324, A092267, A092753
conference matrices: see matrices, conference

configurations , sequences related to :
configurations (combinatorial or geometrical): A001403*, A099999, A023994, A005787, A000698, A100001, A098702, A098804, A098822, A098841, A098851, A098852, A098854

Congruence property:: A002703, A002704, A002705
Congruences:: A001915, A001916
congruent mod 1 to 0 : A000004
congruent mod 10 :

to 0 (not) : A052382; to 0 : A008592, to 1 : A017281, to 2 : A017293, to 3 : A017305, to 4 : A017317, to 5 : A017329, to 6 : A017341, to 7 : A017353, to 8 : A017365, to 9 : A017377,
to {1, 7} : A131229, to {1, 9} : A090771, to {2, 8} : A090772, to {4, 6} : A090773

congruent mod 2 : to 0 (not) : A005408, to 0 : A005843, to 1 (not) : A005843, to 1 : A005408.

congruent mod 3 :

to 0 (not) : A001651, to 0 : A008585, to 1 (not) : A007494, to 1 : A016777, to 2 (not) : A032766, to 2 : A016789
to {0, 1} : A032766, to {0, 2} : A007494, to {1, 2} : A001651.

congruent mod 4 :

to 0 (not) : A042968, to 0 : A008586, to 1 (not) : A004772, to 1 : A016813, to 2 (not) : A042965, to 2 : A016825, to 3 (not) : A004773, to 3 : A004767,
to {0, 1, 2} : A004773, to {0, 1, 3} : A042965, to {0, 1} : A042948, to {0, 2, 3} : A004772, to {0, 3} : A014601, to {1, 2, 3} : A042968, to {1, 2} : A042963, to {2, 3} : A042964.

congruent mod 5 :

to 0 (not) : A047201, to 0 : A008587, to 1 (not) : A047203, to 1 : A016861, to 2 (not) : A047207, to 2 : A016873, to 3 (not) : A032769, to 3 : A016885, to 4 (not) : A001068, to 4 : A016897,
to {0, 1, 2, 3} : A001068, to {0, 1, 2, 4} : A032769, to {0, 1, 2} : A047217, to {0, 1, 3, 4} : A047207, to {0, 1, 3} : A047220, to {0, 1, 4} : A008854, to {0, 1} : A008851, to {0, 2, 3, 4} : A047203, to {0, 2, 3} : A047222, to {0, 2, 4} : A047212, to {0, 2} : A047215, to {0, 3, 4} : A047205, to {0, 3} : A047218, to {0, 4} : A047208,
to {1, 2, 3, 4} : A047201, to {1, 2, 3} : A047223, to {1, 2, 4} : A032793, to {1, 2} : A047216, to {1, 3, 4} : A047206, to {1, 3} : A047219, to {1, 4} : A047209, to {2, 3, 4} : A047202, to {2, 3} : A047221, to {2, 4} : A047211, to {3, 4} : A047204.

congruent mod 6 :

to 0 (not) : A047253, to 0 : A008588, to 1 (not) : A047248, to 1 : A016921, to 2 (not) : A047252, to 2 : A016933, to 3 (not) : A047263, to 3 : A016945, to 4 (not) : A047256, to 4 : A016957, to 5 (not) : A047226, to 5 : A016969,
to {0, 1, 2, 3, 4} : A047226, to {0, 1, 2, 3, 5} : A047256, to {0, 1, 2, 3} : A047246, to {0, 1, 2, 4, 5} : A047263, to {0, 1, 2, 4} : A047237, to {0, 1, 2, 5} : A047269, to {0, 1, 2} : A047240, to {0, 1, 3, 4, 5} : A047252, to {0, 1, 3, 5} : A047273, to {0, 1, 3} : A047242, to {0, 1, 4, 5} : A047260, to {0, 1, 4} : A047234, to {0, 1, 5} : A047266, to {0, 1} : A047225,
to {0, 2, 3, 4, 5} : A047248, to {0, 2, 3, 4} : A047229, to {0, 2, 3} : A047244, to {0, 2, 4, 5} : A047262, to {0, 2, 5} : A047267, to {0, 2} : A047238, to {0, 3, 4, 5} : A047250, to {0, 3, 4} : A047231, to {0, 3, 5} : A047271, to {0, 4, 5} : A047258, to {0, 4} : A047233, to {0, 5} : A047264,
to {1, 2, 3, 4, 5} : A047248, to {1, 2, 3, 4} : A031477, to {1, 2, 3, 5} : A047255, to {1, 2, 3} : A047245, to {1, 2, 4} : A047236, to {1, 2, 5} : A047268, to {1, 2} : A047239, to {1, 3, 4, 5} : A047251, to {1, 3, 4} : A029739, to {1, 3} : A047241, to {1, 4, 5} : A047259, to {1, 5} : A007310,
to {2, 3, 4, 5} : A047247, to {2, 3, 4} : A047228, to {2, 3, 5} : A047254, to {2, 3} : A047243, to {2, 4, 5} : A047261, to {2, 4} : A047235, to {3, 4, 5} : A047249, to {3, 4} : A047230, to {3, 5} : A047270, to {4, 5} : A047257

congruent mod 7:

to 0 (not) : A047304, to 0 : A008589, to 1 (not) : A047306, to 1 : A016993, to 2 (not) : A047310, to 2 : A017005, to 3 (not) : A047318, to 3 : A017017, to 4 (not) : A032775, to 4 : A017029, to 5 (not) : A047303, to 5 : A017041, to 6 (not) : A047368, to 6 : A017053,
to {0, 1, 2, 3, 4, 5} : A047368, to {0, 1, 2, 3, 4, 6} : A047303, to {0, 1, 2, 3, 4} : A047337, to {0, 1, 2, 3, 5, 6} : A032775, to {0, 1, 2, 3, 5} : A047373, to {0, 1, 2, 3, 6} : A047287, to {0, 1, 2, 3} : A047361, to {0, 1, 2, 4, 5, 6} : A047318, to {0, 1, 2, 4, 5} : A047381, to {0, 1, 2, 4, 6} : A047295, to {0, 1, 2, 4} : A047351, to {0, 1, 2, 5, 6} : A047326, to {0, 1, 2, 5} : A047388, to {0, 1, 2, 6} : A047279, to {0, 1, 2} : A047354,
to {0, 1, 3, 4, 5, 6} : A047310, to {0, 1, 3, 4, 5} : A047367, to {0, 1, 3, 4, 6} : A047299, to {0, 1, 3, 4} : A047344, to {0, 1, 3, 5, 6} : A047330, to {0, 1, 3, 5} : A047392, to {0, 1, 3, 6} : A047283, to {0, 1, 3} : A047357, to {0, 1, 4, 5, 6} : A047314, to {0, 1, 4, 5} : A047377, to {0, 1, 4, 6} : A047291, to {0, 1, 4} : A047347, to {0, 1, 5, 6} : A047322, to {0, 1, 5} : A047384, to {0, 1, 6} : A047275, to {0, 1} : A047274,
to {0, 2, 3, 4, 5, 6} : A047306, to {0, 2, 3, 4, 5} : A047363, to {0, 2, 3, 4, 6} : A047301, to {0, 2, 3, 4} : A047340, to {0, 2, 3, 5, 6} : A047332, to {0, 2, 3, 5} : A047371, to {0, 2, 3, 6} : A047285, to {0, 2, 3} : A047359,
to {0, 2, 4, 5, 6} : A047316, to {0, 2, 4, 5} : A047379, to {0, 2, 4, 6} : A047293, to {0, 2, 4} : A047349, to {0, 2, 5, 6} : A047324, to {0, 2, 5} : A047386, to {0, 2, 6} : A047277, to {0, 2} : A047352,
to {0, 3, 4, 5, 6} : A047308, to {0, 3, 4, 5} : A047365, to {0, 3, 4, 6} : A047297, to {0, 3, 4} : A047342, to {0, 3, 5, 6} : A047328, to {0, 3, 5} : A047390, to {0, 3, 6} : A047281, to {0, 3} : A047355, to {0, 4, 5, 6} : A047312, to {0, 4, 5} : A047375, to {0, 4, 6} : A047289, to {0, 4} : A047345, to {0, 5, 6} : A047320, to {0, 5} : A047382, to {0, 6} : A047335,
to {1, 2, 3, 4, 5, 6} : A047304, to {1, 2, 3, 4, 5} : A047369, to {1, 2, 3, 4, 6} : A047302, to {1, 2, 3, 4} : A047338, to {1, 2, 3, 5, 6} : A032796, to {1, 2, 3, 5} : A047372, to {1, 2, 3, 6} : A047286, to {1, 2, 3} : A047360, to {1, 2, 4, 5, 6} : A047317, to {1, 2, 4, 5} : A047380, to {1, 2, 4, 6} : A047294, to {1, 2, 4} : A047350, to {1, 2, 5, 6} : A047325, to {1, 2, 5} : A047387, to {1, 2, 6} : A047278, to {1, 2} : A047353,
to {1, 3, 4, 5, 6} : A047309, to {1, 3, 4, 5} : A047366, to {1, 3, 4, 6} : A047298, to {1, 3, 4} : A047343, to {1, 3, 5, 6} : A047329, to {1, 3, 5} : A047391, to {1, 3, 6} : A047282, to {1, 3} : A047356, to {1, 4, 5, 6} : A047313, to {1, 4, 5} : A047376, to {1, 4, 6} : A047290, to {1, 4} : A047346, to {1, 5, 6} : A047321, to {1, 5} : A047383, to {1, 6} : A047336,
to {2, 3, 4, 5, 6} : A047305, to {2, 3, 4, 5} : A047362, to {2, 3, 4, 6} : A047300, to {2, 3, 4} : A047339, to {2, 3, 5, 6} : A047331, to {2, 3, 5} : A047370, to {2, 3, 6} : A047284, to {2, 3} : A047358, to {2, 4, 5, 6} : A047315, to {2, 4, 5} : A047378, to {2, 4, 6} : A047292, to {2, 4} : A047348, to {2, 5, 6} : A047323, to {2, 5} : A047385, to {2, 6} : A047276,
to {3, 4, 5, 6} : A047307, to {3, 4, 5} : A047364, to {3, 4, 6} : A047296, to {3, 4} : A047341, to {3, 5, 6} : A047327, to {3, 5} : A047389, to {3, 6} : A047280, to {4, 5, 6} : A047311, to {4, 5} : A047374, to {4, 6} : A047288, to {5, 6} : A047319.

congruent mod 8 :

to 0 (not) : A047592, to 0 : A008590, to 1 (not) : A047594, to 1 : A017077, to 2 (not) : A047565, to 2 : A017089, to 3 (not) : A047573, to 3 : A017101, to 4 (not) : A047588, to 4 : A017113, to 5 (not) : A004776, to 5 : A004770, to 6 (not) : A047595, to 6 : A017137, to 7 (not) : A004777, to 7 : A004771;
to {0, 1, 2, 3, 4, 5, 6} : A004777, to {0, 1, 2, 3, 4, 5, 7} : A047595, to {0, 1, 2, 3, 4, 5} : A047602, to {0, 1, 2, 3, 4, 6, 7} : A004776, to {0, 1, 2, 3, 4, 6} : A047420, to {0, 1, 2, 3, 4, 7} : A047549, to {0, 1, 2, 3, 4} : A047453, to {0, 1, 2, 3, 5, 6, 7} : A047588, to {0, 1, 2, 3, 5, 6} : A047450, to {0, 1, 2, 3, 5, 7} : A047490, to {0, 1, 2, 3, 5} : A047607, to {0, 1, 2, 3, 6, 7} : A047505, to {0, 1, 2, 3, 6} : A047405, to {0, 1, 2, 3, 7} : A047534, to {0, 1, 2, 3} : A047476,
to {0, 1, 2, 4, 5, 6, 7} : A047573, to {0, 1, 2, 4, 5, 7} : A047498, to {0, 1, 2, 4, 5} : A047614, to {0, 1, 2, 4, 6, 7} : A047513, to {0, 1, 2, 4, 6} : A047412, to {0, 1, 2, 4, 7} : A047542, to {0, 1, 2, 4} : A047466, to {0, 1, 2, 5, 6, 7} : A047581, to {0, 1, 2, 5, 6} : A047442, to {0, 1, 2, 5, 7} : A047483, to {0, 1, 2, 5} : A047620, to {0, 1, 2, 6, 7} : A047555, to {0, 1, 2, 6} : A047397, to {0, 1, 2, 7} : A047527, to {0, 1, 2} : A047469,
to {0, 1, 3, 4, 5, 6, 7} : A047565, to {0, 1, 3, 4, 5, 6} : A047428, to {0, 1, 3, 4, 5} : A047601, to {0, 1, 3, 4, 6, 7} : A047517, to {0, 1, 3, 4, 6} : A047416, to {0, 1, 3, 4, 7} : A047545, to {0, 1, 3, 4} : A047460, to {0, 1, 3, 5, 6, 7} : A047585, to {0, 1, 3, 5, 6} : A047446, to {0, 1, 3, 5, 7} : A047486, to {0, 1, 3, 5} : A047624, to {0, 1, 3, 6, 7} : A047559, to {0, 1, 3, 6} : A047401, to {0, 1, 3, 7} : A047530, to {0, 1, 3} : A047472,
to {0, 1, 4, 5, 6, 7} : A047569, to {0, 1, 4, 5, 6} : A047432, to {0, 1, 4, 5, 7} : A047494, to {0, 1, 4, 6, 7} : A047509, to {0, 1, 4, 6} : A047409, to {0, 1, 4, 7} : A047538, to {0, 1, 4} : A047462, to {0, 1, 5, 6, 7} : A047577, to {0, 1, 5, 6} : A047439, to {0, 1, 5, 7} : A047479, to {0, 1, 5} : A047616, to {0, 1, 6, 7} : A047551, to {0, 1, 6} : A047394, to {0, 1, 7} : A047523, to {0, 1} : A047393,
to {0, 2, 3, 4, 5, 6, 7} : A047594, to {0, 2, 3, 4, 5, 6} : A047424, to {0, 2, 3, 4, 5, 7} : A047503, to {0, 2, 3, 4, 5} : A047597, to {0, 2, 3, 4, 6} : A047418, to {0, 2, 3, 4, 7} : A047547, to {0, 2, 3, 4} : A047456, to {0, 2, 3, 5, 6, 7} : A047587, to {0, 2, 3, 5, 6} : A047448, to {0, 2, 3, 5, 7} : A047488, to {0, 2, 3, 5} : A047605, to {0, 2, 3, 6, 7} : A047560, to {0, 2, 3, 6} : A047403, to {0, 2, 3, 7} : A047532, to {0, 2, 3} : A047474,
to {0, 2, 4, 5, 6, 7} : A047571, to {0, 2, 4, 5, 6} : A047434, to {0, 2, 4, 5, 7} : A047496, to {0, 2, 4, 5} : A047612, to {0, 2, 4, 6, 7} : A047511, to {0, 2, 4, 7} : A047540, to {0, 2, 4} : A047464, to {0, 2, 5, 6, 7} : A047579, to {0, 2, 5, 6} : A047441, to {0, 2, 5, 7} : A047481, to {0, 2, 5} : A047618, to {0, 2, 6, 7} : A047553, to {0, 2, 6} : A047395, to {0, 2, 7} : A047525, to {0, 2} : A047467,
to {0, 3, 4, 5, 6, 7} : A047563, to {0, 3, 4, 5, 6} : A047426, to {0, 3, 4, 5, 7} : A047500, to {0, 3, 4, 5} : A047599, to {0, 3, 4, 6, 7} : A047515, to {0, 3, 4, 6} : A047414, to {0, 3, 4} : A047458, to {0, 3, 5, 6, 7} : A047583, to {0, 3, 5, 6} : A047444, to {0, 3, 5} : A047622, to {0, 3, 6, 7} : A047557, to {0, 3, 6} : A047399, to {0, 3, 7} : A047528, to {0, 3} : A047470,
to {0, 4, 5, 6, 7} : A047567, to {0, 4, 5, 6} : A047430, to {0, 4, 5, 7} : A047492, to {0, 4, 5} : A047609, to {0, 4, 6, 7} : A047507, to {0, 4, 6} : A047407, to {0, 4, 7} : A047536, to {0, 5, 6, 7} : A047575, to {0, 5, 6} : A047437, to {0, 5, 7} : A047477, to {0, 5} : A047615, to {0, 6, 7} : A047590, to {0, 6} : A047451, to {0, 7} : A047521,
to {1, 2, 3, 4, 5, 6, 7} : A047592, to {1, 2, 3, 4, 5, 6} : A047422, to {1, 2, 3, 4, 5, 7} : A047504, to {1, 2, 3, 4, 5} : A047603, to {1, 2, 3, 4, 6, 7} : A047519, to {1, 2, 3, 4, 6} : A047419, to {1, 2, 3, 4, 7} : A047449, to {1, 2, 3, 4, 7} : A047548, to {1, 2, 3, 4} : A047454, to {1, 2, 3, 5, 7} : A047489, to {1, 2, 3, 5} : A047606, to {1, 2, 3, 6, 7} : A047561, to {1, 2, 3, 6} : A047404, to {1, 2, 3, 7} : A047533, to {1, 2, 3} : A047475,
to {1, 2, 4, 5, 6, 7} : A047572, to {1, 2, 4, 5, 6} : A047435, to {1, 2, 4, 5, 7} : A047497, to {1, 2, 4, 5} : A047613, to {1, 2, 4, 6, 7} : A047512, to {1, 2, 4, 6} : A047411, to {1, 2, 4, 7} : A047541, to {1, 2, 4} : A047465, to {1, 2, 5, 6, 7} : A047580, to {1, 2, 5, 7} : A047482, to {1, 2, 5} : A047619, to {1, 2, 6, 7} : A047554, to {1, 2, 6} : A047396, to {1, 2, 7} : A047526, to {1, 2} : A047468,
to {1, 3, 4, 5, 6, 7} : A047564, to {1, 3, 4, 5, 6} : A047427, to {1, 3, 4, 5, 7} : A047501, to {1, 3, 4, 5} : A047600, to {1, 3, 4, 6, 7} : A047516, to {1, 3, 4, 6} : A047415, to {1, 3, 4, 7} : A047544, to {1, 3, 4} : A047459, to {1, 3, 5, 6, 7} : A047584, to {1, 3, 5, 6} : A047445, to {1, 3, 5} : A047623, to {1, 3, 6, 7} : A047558, to {1, 3, 6} : A047400, to {1, 3, 7} : A047529, to {1, 3} : A047471,
to {1, 4, 5, 6, 7} : A047568, to {1, 4, 5, 6} : A047431, to {1, 4, 5, 7} : A047493, to {1, 4, 5} : A047610, to {1, 4, 6, 7} : A047508, to {1, 4, 6} : A047408, to {1, 4, 7} : A047537, to {1, 4} : A047461,
to {1, 5, 6, 7} : A047576, to {1, 5, 6} : A047438, to {1, 5, 7} : A047478, to {1, 6, 7} : A047591, to {1, 6} : A047452, to {1, 7} : A047522,
to {2, 3, 4, 5, 6, 7} : A047593, to {2, 3, 4, 5, 6} : A047423, to {2, 3, 4, 5, 7} : A047502, to {2, 3, 4, 5} : A047596, to {2, 3, 4, 6, 7} : A047518, to {2, 3, 4, 6} : A047417, to {2, 3, 4, 7} : A047546, to {2, 3, 4} : A047455,
to {2, 3, 5, 6, 7} : A047586, to {2, 3, 5, 6} : A047447, to {2, 3, 5, 7} : A047487, to {2, 3, 5} : A047604, to {2, 3, 6} : A047402, to {2, 3, 7} : A047531, to {2, 3} : A047473,
to {2, 4, 5, 6, 7} : A047570, to {2, 4, 5, 6} : A047433, to {2, 4, 5, 7} : A047495, to {2, 4, 5} : A047611, to {2, 4, 6, 7} : A047510, to {2, 4, 6} : A047410, to {2, 4, 7} : A047539, to {2, 4} : A047463,: to {2, 5, 6, 7} : A047578, to {2, 5, 6} : A047440, to {2, 5, 7} : A047480, to {2, 5} : A047617, to {2, 6, 7} : A047552, to {2, 7} : A047524,
to {3, 4, 5, 6, 7} : A047562, to {3, 4, 5, 6} : A047425, to {3, 4, 5, 7} : A047499, to {3, 4, 5} : A047598, to {3, 4, 6, 7} : A047514, to {3, 4, 6} : A047413, to {3, 4, 7} : A047543, to {3, 4} : A047457, to {3, 5, 6, 7} : A047582, to {3, 5, 6} : A047443, to {3, 5, 7} : A047484, to {3, 5} : A047621, to {3, 6, 7} : A047556, to {3, 6} : A047398,
to {4, 5, 6, 7} : A047566, to {4, 5, 6} : A047429, to {4, 5, 7} : A047491, to {4, 5} : A047608, to {4, 6, 7} : A047506, to {4, 6} : A047406, to {4, 7} : A047535,
to {5, 6, 7} : A047574, to {5, 6} : A047436, to {5, 7} : A047550, to {6, 7} : A047589.

congruent mod 9:

to 0 (not) : A168183, to 0 : A008591, to 1 : A017173, to 2 : A017185, to 3 : A017197, to 4 : A017209, to 5 : A017221, to 6 : A017233, to 7 : A017245, to 8 : A017257,
to {0, 1, 2, 3, 6, 7, 8} : A060464, to {0, 1} : A090570, to {0, 2, 5, 8} : A174438, to {1, 4, 5, 8} : A174396, to {1, 8} : A056020, to {2, 4, 5, 7} : A056527, to {2, 7} : A063289, to {3, 6} : A016051, to {4, 5} : A156638, to {4, 7} : A125758.

congruent numbers: A003273*, A006991, A016090

congruent products between domains N and GF(2)[X] , sequences defined by  :
congruent products between domains N and GF(2)[X], Here * stands for ordinary multiplication (A004247), and X means carryless GF(2)[X] multiplication (A048720))
congruent products between domains N and GF(2)[X], 3*n = 3Xn (A003714), 3*n = 7Xn (A048717), 3*n = 7Xn and 5*n = 5Xn (A048719)
congruent products between domains N and GF(2)[X], 5*n = 5Xn (A048716), 7*n = 7Xn (A048715), 7*n = 11Xn (A115770)
congruent products between domains N and GF(2)[X], 9*n = 9Xn (A115845), 9*n = 25Xn (A115801), 9*n = 25Xn, but 17*n is not 49Xn (A115811)
congruent products between domains N and GF(2)[X], 11*n = 31Xn (A115803), 13*n = 21Xn (A115772), 13*n = 29Xn (A115805)
congruent products between domains N and GF(2)[X], 15*n = 15Xn (A048718), 15*n = 23Xn (A115774), 15*n = 27Xn (A115807)
congruent products between domains N and GF(2)[X], 17*n = 17Xn (A115847), 17*n = 49Xn (A115809), 19*n = 55Xn (A115874)
congruent products between domains N and GF(2)[X], 21*n = 21Xn (A115422), 31*n = 31Xn (A115423), 33*n = 33Xn (A114086)
congruent products between domains N and GF(2)[X], 41*n = 105Xn (A115876), 49*n = 81Xn (A114384), 57*n = 73Xn (A114386)
congruent products between domains N and GF(2)[X], 63*n = 63Xn (A115424)
congruent products between domains N and GF(2)[X], array of solutions for n*k = A065621(n) X k: A115872
congruent products between domains N and GF(2)[X], see also A115857, A115871
congruent products between domains N and GF(2)[X]: see also congruent products under XOR

congruent products under XOR , sequences defined by  :
congruent products under XOR, 3*n = 2*n XOR n (A003714), 5*n = 4*n XOR n (A048716), 5*n = 3*n XOR 2*n (A115767)
congruent products under XOR, 7*n = 6*n XOR n (A048715), 7*n = 5*n XOR 2*n (A115813), 7*n = 4*n XOR 3*n (A048715)
congruent products under XOR, 11*n = 10*n XOR n (A115793), 11*n = 9*n XOR 2*n (A115795), 11*n = 8*n XOR 3*n (A115797)
congruent products under XOR, 11*n = 7*n XOR 4*n (A115799), 11*n = 6*n XOR 5*n (A115827), 15*n = 14*n XOR n (A048718)
congruent products under XOR, 17*n = 16*n XOR n (A115847), 17*n = 13*n XOR 4*n (A115817), 19*n = 15*n XOR 4*n (A115819)
congruent products under XOR, 21*n = 20*n XOR n (A115422), 21*n = 15*n XOR 6*n (A115821), 21*n = 11*n XOR 10*n (A115829)
congruent products under XOR, 23*n = 13*n XOR 8*n (A115823), 25*n = 16*n XOR 9*n (A115831), 33*n = 17*n XOR 16*n (A115833)
congruent products under XOR, 31*n = 30*n XOR n (A115423), 33*n = 32*n XOR n (A114086), 63*n = 62*n XOR n (A115424)
congruent products under XOR, 9*n = 8*n XOR n (A115845), 9*n = 7*n XOR 2*n (A115815)
congruent products under XOR, least k such that n XOR n*2^k = n*(2^k + 1), A116361
congruent products under XOR: see also congruent products between domains N and GF(2)[X]

conjecture, sequences related to various conjectures :
conjecture, curling number: A094004
conjectured formulas: see A005158, A005160, A005162, A005163, A005164 (there are conjectured formulas for these sequences which may still be open problems)
conjectured sequences (00): The following sequences contain one or more terms that are only conjectured values
conjectured sequences (01): In some cases the conjectured terms are only mentioned in the comments
conjectured sequences (02): This list was last revised Jun 19 2008. It is surely incomplete, and by the time you look at them their status may have changed
conjectured sequences (03): Suggestions for additions to or deletions from this list will be welcomed - njasloane@gmail.com
conjectured sequences (04): A008892, A098007, A063769 and other sequences related to the "aliquot divisors" problem
conjectured sequences (05): A065083, A090315, A104885, A121091, A051346, A115016
conjectured sequences (06): A075788, A075789, A075790, A075791, A083435, A086548, A087318, A087319, A088126, A090315, A092959
conjectured sequences (07): A000373, A002149, A014595, A014596, A019450, A019459, A020999,
conjectured sequences (08): A022495-A022498, A023054, A023108, A038552, A046125, A052131,
conjectured sequences (09): A066426, A066435, A066450, A066510, A066746, A066817, A067579,
conjectured sequences (10): A068591, A071071, A071887, A072023, A072326, A072540, A074980,
conjectured sequences (11): A074981, A078693, A078754, A078869, A079098, A079398, A079611,
conjectured sequences (12): A080131, A080133, A080134, A080761, A080762, A085508, A086058,
conjectured sequences (13): A086748, A087092, A088910, A091305, A092372-A092382, A096340,
conjectured sequences (14): A098860, A099118, A099119, A105233, A105600, A105601, A108795,
conjectured sequences (15): A110000, A110108, A110172, A110222, A110223, A110312, A110356,
conjectured sequences (16): A112647, A112799, A112826, A118278-A118285, A120414*, A121069,
conjectured sequences (17): A121346, A121507, A121508, A119479, A009287, A090997, A090987,
conjectured sequences (18): A004137, A048873, A056287, A059813, A059817, A059818, A065106, A065107, A081082, A084619, A090659, A099260, A117342,
conjectured sequences (19): A000954, A000974, A007008 (?), A023189-A023193, A036462-A036463, A037018, A039508, A039515, A051522, A056636, A076853, A105170, A118371
conjectured sequences (20): A080803, A124484, A093486, A140394, A007323, A027687, A046060, A046061
conjectured sequences (21): sequences where the terms are only conjecturally correct, but there is no proof so far: A020497, A020665, A023108, A051021, A074981, A076335, A094004, A101036, A118278, A134162, A216063, A226613, A226629, A236321, A237880, A293142
conjectures: see also Artin's conjecture
conjectures: see also Catalan's conjecture
conjectures: see also Chvatal conjecture
conjectures: see also complete graph conjecture
conjectures: see also curling number conjecture
conjectures: see also Gilbreath's conjecture
conjectures: see also Goldbach conjecture
conjectures: see also Heawood conjecture
conjectures: see also Kummer's conjecture
conjectures: see also Legendre's conjecture
conjectures: see also Mertens's conjecture
conjectures: see also permutations of the integers, conjectured
conjectures: see also Polya's conjecture
conjectures: see also sequences that need extending

conjugacy classes of groups: see groups, conjugacy classes
Conn, Herb, sums involving 1/binomial(2n,n): A098830+A181334+A185585, A014307+A180875, A181374+A185672
connect the dots: A187679
connected graphs, see graphs, connected
connected regular graphs, see graphs, regular connected
connecting 2n points: A006605
Connell sequence: A001614*
Consecutive:: A002308, A001223, A007610, A002307, A007513, A000236, A007667, A006889, A001033, A006055
Consistent:: A005779, A001225

constants, sequences related to :

constant primes (= primes of the form floor(const*10^k)):

A005042 (π = Pi), A007512 (e = exp(1)), A072952 (gamma), A064117 (golden ratio Phi), A115453 (sqrt(2)), A119343 (sqrt(3)), A118329 (Catalan's constant), A119333 (Apéry's constant zeta(3)), A176942 (Champernowne constant), A118419 (Glaisher-Kinkelin constant), A122422 (Soldner's constant), A174975 (Golomb-Dickman constant lambda), A210704 (3^(1/3)), A227529 (Copeland-Erdős constant), A228241 (ln(10)).

constants, decimal expansion of: e A001113, gamma A001620, golden ratio A001622, pi A000796, silver mean A014176
constants, Robbins constant: A073012
constant sequences: see recurrence, linear, order 01, (1)
constructing numbers from other numbers and the operations of addition, subtraction, etc: see under four 4's problem
contexts: A047684
CONTINUANT transform: see Transforms file
continuant: A072347

continued cotangents, sequences related to :
continued cotangents:: A002668, A006266, A006268, A002667, A006267, A002666, A006269

continued fractions , sequences related to :
continued fractions (1):: A003285, A006466, A002951, A003417, A002852, A002211, A006083, A006839, A002947, A002948
continued fractions (2):: A002946, A001685, A001686, A004200, A002665, A006271, A001684, A006085, A002945, A007515
continued fractions (3):: A002937, A001112, A006464, A003118, A001203, A006273, A006270, A002949, A006467, A003117
continued fractions (4):: A006221, A002950, A001204, A006084, A005483, A006518, A005147, A006272, A006274, A005146, A006465
continued fractions for constants: (2/Pi)*Integral(sin(x)/x, x=0..Pi) (A036791), 0.12112111211112... A042974 (A056030) Product_{k>=1} (1-1/2^k) (A048652)
continued fractions for constants: 2^(1/2) etc.: see below under: continued fractions for constants: square roots of 2, etc.
continued fractions for constants: 2^(1/3) (A002945), 3^(1/3) (A002946), 4^(1/3) (A002947), 5^(1/3) (A002948), 6^(1/3) (A002949), 7^(1/3) (A005483), cube root of non-cubes 9+n to 100 (A010239, A010240, etc)
continued fractions for constants: 2^(1/3)+sqrt(3) (A039923), BesselK(1,2)/BesselK(0,2) (A051149), Catalan's constant (A014538)
continued fractions for constants: 2^(1/5) (A002950), 3^(1/5) (A003117), 4^(1/5) (A003118), 5^(1/5) (A002951)
continued fractions for constants: Champernowne (A030167), Conway's (A014967), Copeland-Erdos (A030168), Euler's gamma (A002852)
continued fractions for constants: e (A003417), e/2 (A006083), e/3 (A006084), e/4 (A006085), e^2 (A001204), e^3 (A058282)
continued fractions for constants: e^Pi (A058287), e^pi - pi (A018939), (e+1)/3 (A028360), (e-1)/(e+1) (A016825), i^i = exp(-Pi/2) (A049007)
continued fractions for constants: Fransen-Robinson (A046943), GAMMA(1/3) (A030651), GAMMA(2/3) (A030652), Integral(sin(x)/x, x=0..Pi) (A036790)
continued fractions for constants: golden ratio (A000012)
continued fractions for constants: Khintchine's (A002211), LambertW(1) (A030179), Lehmer's (A002665), Liouville's A012245 (A058304), Niven's (A033151)
continued fractions for constants: ln(2+n) to ln(100) (A016730+n), ln((2n+1)/2) to ln(99/2) (A016528+n)
continued fractions for constants: M(1,sqrt(2)) (A053003), 1 / M(1,sqrt(2)) (A053002), 1 +1/(e +1/(e^2 +..)) (A055972), 2*cos(2*Pi/7) (A039921)
continued fractions for constants: Otter's rooted tree A000081 (A051492), Thue-Morse (A014572), Tribonacci constant (A019712, A058296)
continued fractions for constants: Pi (A001203), 2 Pi (A058291), Pi/2 (A053300), Pi^2 (A058284), Pi^e (A058288), pi+e (A058651)
continued fractions for constants: sqrt(2Pi) (A058293), sqrt(Pi) (A058280), sqrt(e) (A058281)
continued fractions for constants: sqrt(3) - 1: A134451, A048878/A002530
continued fractions for constants: sqrt(n): 2 (A040000 and A001333/A000129), 3 (A040001 and A002531/A002530), 5 (A040002 and A001077/A001076), 6 (A040003 and A041006/A041007), 7 (A010121 and A041008/A041009), 8 (A040005 and A041010/A041011), 10 (A040006 and A005667/A005668), 11 (A040007 and A041014/A041015), 12 (A040008 and A041016/A041017), 13 (A010122 and A041018/A041019), 14 (A010123 and A041020/A041021), 15 (A040011 and A041022/A041023), 17 (A040012 and A041024/A041025), 18 (A040013 and A041026/A041027), 19 (A010124 and A041028/A041029), 20 (A040015 and A041030/A041031), 21 (A010125 and A041032/A041033), 22 (A010126 and A041034/A041035), 23 (A010127 and A041036/A041037), 24 (A040019 and A041038/A041039), 26 (A040020 and A041040/A041041), 27 (A040021 and A041042/A041043), 28 (A040022 and A041044/A041045), 29 (A010128 and A041046/A041047), 30 (A040024 and A041048/A041049), 31 (A010129 and A041050/A041051), 32 (A010130 and A041052/A041053), 33 (A010131 and A041054/A041055), 34 (A010132 and A041056/A041057), 35 (A040029 and A041058/A041059), 37 (A040030 and A041060/A041061), 38 (A040031 and A041062/A041063), 39 (A040032 and A041064/A041065), 40 (A040033 and A041066/A041067), 41 (A010133 and A041068/A041069), 42 (A040035 and A041070/A041071), 43 (A010134 and A041072/A041073), 44 (A040037 and A041074/A041075), 45 (A010135 and A041076/A041077), 46 (A010136 and A041078/A041079), 47 (A010137 and A041080/A041081), 48 (A040041 and A041082/A041083), 50 (A040042 and A041084/A041085), 51 (A040043 and A041086/A041087), 52 (A010138 and A041088/A041089), 53 (A010139 and A041090/A041091), 54 (A010140 and A041092/A041093), 55 (A010141 and A041094/A041095), 56 (A040048 and A041096/A041097), 57 (A010142 and A041098/A041099), 58 (A010143 and A041100/A041101), 59 (A010144 and A041102/A041103), 60 (A040052 and A041104/A041105), 61 (A010145 and A041106/A041107), 62 (A010146 and A041108/A041109), 63 (A040055 and A041110/A041111), 65 (A040056 and A041112/A041113), 66 (A040057 and A041114/A041115), 67 (A010147 and A041116/A041117), 68 (A040059 and A041118/A041119), 69 (A010148 and A041120/A041121), 70 (A010149 and A041122/A041123), 71 (A010150 and A041124/A041125), 72 (A040063 and A041126/A041127), 73 (A010151 and A041128/A041129), 74 (A010152 and A041130/A041131), 75 (A010153 and A041132/A041133), 76 (A010154 and A041134/A041135), 77 (A010155 and A041136/A041137), 78 (A010156 and A041138/A041139), 79 (A010157 and A041140/A041141), 80 (A040071 and A041142/A041143), 82 (A040072 and A041144/A041145), 83 (A040073 and A041146/A041147), 84 (A040074 and A041148/A041149), 85 (A010158 and A041150/A041151), 86 (A010159 and A041152/A041153), 87 (A040077 and A041154/A041155), 88 (A010160 and A041156/A041157), 89 (A010161 and A041158/A041159), 90 (A040080 and A041160/A041161), 91 (A010162 and A041162/A041163), 92 (A010163 and A041164/A041165), 93 (A010164 and A041166/A041167), 94 (A010165 and A041168/A041169), 95 (A010166 and A041170/A041171), 96 (A010167 and A041172/A041173), 97 (A010168 and A041174/A041175), 98 (A010169 and A041176/A041177), 99 (A010170 and A041178/A041179), 101 (A040090 and A041180/A041181), 102 (A040091 and A041182/A041183), 103 (A010171 and A041184/A041185), 104 (A040093 and A041186/A041187), 105 (A040094 and A041188/A041189), 106 (A010172 and A041190/A041191), 107 (A010173 and A041192/A041193), 108 (A010174 and A041194/A041195), 109 (A010175 and A041196/A041197), 110 (A040099 and A041198/A041199), 111 (A010176 and A041200/A041201), 112 (A010177 and A041202/A041203), 113 (A010178 and A041204/A041205), 114 (A010179 and A041206/A041207), 115 (A010180 and A041208/A041209), 116 (A010181 and A041210/A041211), 117 (A010182 and A041212/A041213), 118 (A010183 and A041214/A041215), 119 (A010184 and A041216/A041217), 120 (A040109 and A041218/A041219), 122 (A040110 and A041220/A041221), 123 (A040111 and A041222/A041223), 124 (A010185 and A041224/A041225), 125 (A010186 and A041226/A041227), 126 (A010187 and A041228/A041229), 127 (A010188 and A041230/A041231), 128 (A010189 and A041232/A041233), 129 (A010190 and A041234/A041235), 130 (A040118 and A041236/A041237), 131 (A010191 and A041238/A041239), 132 (A040120 and A041240/A041241), 133 (A010192 and A041242/A041243), 134 (A010193 and A041244/A041245), 135 (A010194 and A041246/A041247), 136 (A010195 and A041248/A041249), 137 (A010196 and A041250/A041251), 138 (A010197 and A041252/A041253), 139 (A010198 and A041254/A041255), 140 (A010199 and A041256/A041257), 141 (A010200 and A041258/A041259), 142 (A010201 and A041260/A041261), 143 (A040131 and A041262/A041263), 145 (A040132 and A041264/A041265), 146 (A040133 and A041266/A041267), 147 (A040134 and A041268/A041269), 148 (A040135 and A041270/A041271), 149 (A010202 and A041272/A041273), 150 (A040137 and A041274/A041275), 151 (A010203 and A041276/A041277), 152 (A040139 and A041278/A041279), 153 (A010204 and A041280/A041281), 154 (A010205 and A041282/A041283), 155 (A040142 and A041284/A041285), 156 (A040143 and A041286/A041287), 157 (A010206 and A041288/A041289), 158 (A010207 and A041290/A041291), 159 (A010208 and A041292/A041293), 160 (A010209 and A041294/A041295), 161 (A010210 and A041296/A041297), 162 (A010211 and A041298/A001112), 163 (A010212 and A041300/A041301), 164 (A040151 and A041302/A041303), 165 (A010213 and A041304/A041305), 166 (A010214 and A041306/A041307), 167 (A010215 and A041308/A041309), 168 (A040155 and A041310/A041311), 170 (A040156 and A041312/A041313), 171 (A040157 and A041314/A041315), 172 (A010216 and A041316/A041317), 173 (A010217 and A041318/A041319), 174 (A010218 and A041320/A041321), 175 (A010219 and A041322/A041323), 176 (A010220 and A041324/A041325), 177 (A010221 and A041326/A041327), 178 (A010222 and A041328/A041329), 179 (A010223 and A041330/A041331), 180 (A040166 and A041332/A041333), 181 (A010224 and A041334/A041335), 182 (A040168 and A041336/A041337), 183 (A010225 and A041338/A041339), 184 (A010226 and A041340/A041341), 185 (A010227 and A041342/A041343), 186 (A010228 and A041344/A041345), 187 (A010229 and A041346/A041347), 188 (A010230 and A041348/A041349), 189 (A010231 and A041350/A041351), 190 (A010232 and A041352/A041353), 191 (A010233 and A041354/A041355), 192 (A010234 and A041356/A041357), 193 (A010235 and A041358/A041359), 194 (A010236 and A041360/A041361), 195 (A040181 and A041362/A041363), 197 (A040182 and A041364/A041365), 198 (A040183 and A041366/A041367), 199 (A010237 and A041368/A041369), 200 (A040185 and A041370/A041371), 201 (A040186 and A041372/A041373), 202 (A040187 and A041374/A041375), 203 (A040188 and A041376/A041377), 204 (A040189 and A041378/A041379), 205 (A040190 and A041380/A041381), 206 (A040191 and A041382/A041383), 207 (A040192 and A041384/A041385), 208 (A040193 and A041386/A041387), 209 (A040194 and A041388/A041389), 210 (A040195 and A041390/A041391), 211 (A040196 and A041392/A041393), 212 (A040197 and A041394/A041395), 213 (A040198 and A041396/A041397), 214 (A040199 and A041398/A041399), 215 (A040200 and A041400/A041401), 216 (A040201 and A041402/A041403), 217 (A040202 and A041404/A041405), 218 (A040203 and A041406/A041407), 219 (A040204 and A041408/A041409), 220 (A040205 and A041410/A041411), 221 (A040206 and A041412/A041413), 222 (A040207 and A041414/A041415), 223 (A040208 and A041416/A041417), 224 (A040209 and A041418/A041419), 226 (A040210 and A041420/A041421), 227 (A040211 and A041422/A041423), 228 (A040212 and A041424/A041425), 229 (A040213 and A041426/A041427), 230 (A040214 and A041428/A041429), 231 (A040215 and A041430/A041431), 232 (A040216 and A041432/A041433), 233 (A040217 and A041434/A041435), 234 (A040218 and A041436/A041437), 235 (A040219 and A041438/A041439), 236 (A040220 and A041440/A041441), 237 (A040221 and A041442/A041443), 238 (A040222 and A041444/A041445), 239 (A040223 and A041446/A041447), 240 (A040224 and A041448/A041449), 241 (A040225 and A041450/A041451), 242 (A040226 and A041452/A041453), 243 (A040227 and A041454/A041455), 244 (A040228 and A041456/A041457), 245 (A040229 and A041458/A041459), 246 (A040230 and A041460/A041461), 247 (A040231 and A041462/A041463), 248 (A040232 and A041464/A041465), 249 (A040233 and A041466/A041467), 250 (A040234 and A041468/A041469), 251 (A040235 and A041470/A041471), 252 (A040236 and A041472/A041473), 253 (A040237 and A041474/A041475), 254 (A040238 and A041476/A041477), 255 (A040239 and A041478/A041479), 257 (A040240 and A041480/A041481), 258 (A040241 and A041482/A041483), 259 (A040242 and A041484/A041485), 260 (A040243 and A041486/A041487), 261 (A040244 and A041488/A041489), 262 (A040245 and A041490/A041491), 263 (A040246 and A041492/A041493), 264 (A040247 and A041494/A041495), 265 (A040248 and A041496/A041497), 266 (A040249 and A041498/A041499), 267 (A040250 and A041500/A041501), 268 (A040251 and A041502/A041503), 269 (A040252 and A041504/A041505), 270 (A040253 and A041506/A041507), 271 (A040254 and A041508/A041509), 272 (A040255 and A041510/A041511), 273 (A040256 and A041512/A041513), 274 (A040257 and A041514/A041515), 275 (A040258 and A041516/A041517), 276 (A040259 and A041518/A041519), 277 (A040260 and A041520/A041521), 278 (A040261 and A041522/A041523), 279 (A040262 and A041524/A041525), 280 (A040263 and A041526/A041527), 281 (A040264 and A041528/A041529), 282 (A040265 and A041530/A041531), 283 (A040266 and A041532/A041533), 284 (A040267 and A041534/A041535), 285 (A040268 and A041536/A041537), 286 (A040269 and A041538/A041539), 287 (A040270 and A041540/A041541), 288 (A040271 and A041542/A041543), 290 (A040272 and A041544/A041545), 291 (A040273 and A041546/A041547), 292 (A040274 and A041548/A041549), 293 (A040275 and A041550/A041551), 294 (A040276 and A041552/A041553), 295 (A040277 and A041554/A041555), 296 (A040278 and A041556/A041557), 297 (A040279 and A041558/A041559), 298 (A040280 and A041560/A041561), 299 (A040281 and A041562/A041563), 300 (A040282 and A041564/A041565), 301 (A040283 and A041566/A041567), 302 (A040284 and A041568/A041569), 303 (A040285 and A041570/A041571), 304 (A040286 and A041572/A041573), 305 (A040287 and A041574/A041575), 306 (A040288 and A041576/A041577), 307 (A040289 and A041578/A041579), 308 (A040290 and A041580/A041581), 309 (A040291 and A041582/A041583), 310 (A040292 and A041584/A041585), 311 (A040293 and A041586/A041587), 312 (A040294 and A041588/A041589), 313 (A040295 and A041590/A041591), 314 (A040296 and A041592/A041593), 315 (A040297 and A041594/A041595), 316 (A040298 and A041596/A041597), 317 (A040299 and A041598/A041599), 318 (A040300 and A041600/A041601), 319 (A040301 and A041602/A041603), 320 (A040302 and A041604/A041605), 321 (A040303 and A041606/A041607), 322 (A040304 and A041608/A041609), 323 (A040305 and A041610/A041611), 325 (A040306 and A041612/A041613), 326 (A040307 and A041614/A041615), 327 (A040308 and A041616/A041617), 328 (A040309 and A041618/A041619), 329 (A040310 and A041620/A041621), 330 (A040311 and A041622/A041623), 331 (A040312 and A041624/A041625), 332 (A040313 and A041626/A041627), 333 (A040314 and A041628/A041629), 334 (A040315 and A041630/A041631), 335 (A040316 and A041632/A041633), 336 (A040317 and A041634/A041635), 337 (A040318 and A041636/A041637), 338 (A040319 and A041638/A041639), 339 (A040320 and A041640/A041641), 340 (A040321 and A041642/A041643), 341 (A040322 and A041644/A041645), 342 (A040323 and A041646/A041647), 343 (A040324 and A041648/A041649), 344 (A040325 and A041650/A041651), 345 (A040326 and A041652/A041653), 346 (A040327 and A041654/A041655), 347 (A040328 and A041656/A041657), 348 (A040329 and A041658/A041659), 349 (A040330 and A041660/A041661), 350 (A040331 and A041662/A041663), 351 (A040332 and A041664/A041665), 352 (A040333 and A041666/A041667), 353 (A040334 and A041668/A041669), 354 (A040335 and A041670/A041671), 355 (A040336 and A041672/A041673), 356 (A040337 and A041674/A041675), 357 (A040338 and A041676/A041677), 358 (A040339 and A041678/A041679), 359 (A040340 and A041680/A041681), 360 (A040341 and A041682/A041683), 362 (A040342 and A041684/A041685), 363 (A040343 and A041686/A041687), 364 (A040344 and A041688/A041689), 365 (A040345 and A041690/A041691), 366 (A040346 and A041692/A041693), 367 (A040347 and A041694/A041695), 368 (A040348 and A041696/A041697), 369 (A040349 and A041698/A041699), 370 (A040350 and A041700/A041701), 371 (A040351 and A041702/A041703), 372 (A040352 and A041704/A041705), 373 (A040353 and A041706/A041707), 374 (A040354 and A041708/A041709), 375 (A040355 and A041710/A041711), 376 (A040356 and A041712/A041713), 377 (A040357 and A041714/A041715), 378 (A040358 and A041716/A041717), 379 (A040359 and A041718/A041719), 380 (A040360 and A041720/A041721), 381 (A040361 and A041722/A041723), 382 (A040362 and A041724/A041725), 383 (A040363 and A041726/A041727), 384 (A040364 and A041728/A041729), 385 (A040365 and A041730/A041731), 386 (A040366 and A041732/A041733), 387 (A040367 and A041734/A041735), 388 (A040368 and A041736/A041737), 389 (A040369 and A041738/A041739), 390 (A040370 and A041740/A041741), 391 (A040371 and A041742/A041743), 392 (A040372 and A041744/A041745), 393 (A040373 and A041746/A041747), 394 (A040374 and A041748/A041749), 395 (A040375 and A041750/A041751), 396 (A040376 and A041752/A041753), 397 (A040377 and A041754/A041755), 398 (A040378 and A041756/A041757), 399 (A040379 and A041758/A041759), 401 (A040380 and A041760/A041761), 402 (A040381 and A041762/A041763), 403 (A040382 and A041764/A041765), 404 (A040383 and A041766/A041767), 405 (A040384 and A041768/A041769), 406 (A040385 and A041770/A041771), 407 (A040386 and A041772/A041773), 408 (A040387 and A041774/A041775), 409 (A040388 and A041776/A041777), 410 (A040389 and A041778/A041779), 411 (A040390 and A041780/A041781), 412 (A040391 and A041782/A041783), 413 (A040392 and A041784/A041785), 414 (A040393 and A041786/A041787), 415 (A040394 and A041788/A041789), 416 (A040395 and A041790/A041791), 417 (A040396 and A041792/A041793), 418 (A040397 and A041794/A041795), 419 (A040398 and A041796/A041797), 420 (A040399 and A041798/A041799), 421 (A040400 and A041800/A041801), 422 (A040401 and A041802/A041803), 423 (A040402 and A041804/A041805), 424 (A040403 and A041806/A041807), 425 (A040404 and A041808/A041809), 426 (A040405 and A041810/A041811), 427 (A040406 and A041812/A041813), 428 (A040407 and A041814/A041815), 429 (A040408 and A041816/A041817), 430 (A040409 and A041818/A041819), 431 (A040410 and A041820/A041821), 432 (A040411 and A041822/A041823), 433 (A040412 and A041824/A041825), 434 (A040413 and A041826/A041827), 435 (A040414 and A041828/A041829), 436 (A040415 and A041830/A041831), 437 (A040416 and A041832/A041833), 438 (A040417 and A041834/A041835), 439 (A040418 and A041836/A041837), 440 (A040419 and A041838/A041839), 442 (A040420 and A041840/A041841), 443 (A040421 and A041842/A041843), 444 (A040422 and A041844/A041845), 445 (A040423 and A041846/A041847), 446 (A040424 and A041848/A041849), 447 (A040425 and A041850/A041851), 448 (A040426 and A041852/A041853), 449 (A040427 and A041854/A041855), 450 (A040428 and A041856/A041857), 451 (A040429 and A041858/A041859), 452 (A040430 and A041860/A041861), 453 (A040431 and A041862/A041863), 454 (A040432 and A041864/A041865), 455 (A040433 and A041866/A041867), 456 (A040434 and A041868/A041869), 457 (A040435 and A041870/A041871), 458 (A040436 and A041872/A041873), 459 (A040437 and A041874/A041875), 460 (A040438 and A041876/A041877), 461 (A040439 and A041878/A041879), 462 (A040440 and A041880/A041881), 463 (A040441 and A041882/A041883), 464 (A040442 and A041884/A041885), 465 (A040443 and A041886/A041887), 466 (A040444 and A041888/A041889), 467 (A040445 and A041890/A041891), 468 (A040446 and A041892/A041893), 469 (A040447 and A041894/A041895), 470 (A040448 and A041896/A041897), 471 (A040449 and A041898/A041899), 472 (A040450 and A041900/A041901), 473 (A040451 and A041902/A041903), 474 (A040452 and A041904/A041905), 475 (A040453 and A041906/A041907), 476 (A040454 and A041908/A041909), 477 (A040455 and A041910/A041911), 478 (A040456 and A041912/A041913), 479 (A040457 and A041914/A041915), 480 (A040458 and A041916/A041917), 481 (A040459 and A041918/A041919), 482 (A040460 and A041920/A041921), 483 (A040461 and A041922/A041923), 485 (A040462 and A041924/A041925), 486 (A040463 and A041926/A041927), 487 (A040464 and A041928/A041929), 488 (A040465 and A041930/A041931), 489 (A040466 and A041932/A041933), 490 (A040467 and A041934/A041935), 491 (A040468 and A041936/A041937), 492 (A040469 and A041938/A041939), 493 (A040470 and A041940/A041941), 494 (A040471 and A041942/A041943), 495 (A040472 and A041944/A041945), 496 (A040473 and A041946/A041947), 497 (A040474 and A041948/A041949), 498 (A040475 and A041950/A041951), 499 (A040476 and A041952/A041953), 500 (A040477 and A041954/A041955), 501 (A040478 and A041956/A041957), 502 (A040479 and A041958/A041959), 503 (A040480 and A041960/A041961), 504 (A040481 and A041962/A041963), 505 (A040482 and A041964/A041965), 506 (A040483 and A041966/A041967), 507 (A040484 and A041968/A041969), 508 (A040485 and A041970/A041971), 509 (A040486 and A041972/A041973), 510 (A040487 and A041974/A041975), 511 (A040488 and A041976/A041977), 512 (A040489 and A041978/A041979), 513 (A040490 and A041980/A041981), 514 (A040491 and A041982/A041983), 515 (A040492 and A041984/A041985), 516 (A040493 and A041986/A041987), 517 (A040494 and A041988/A041989), 518 (A040495 and A041990/A041991), 519 (A040496 and A041992/A041993), 520 (A040497 and A041994/A041995), 521 (A040498 and A041996/A041997), 522 (A040499 and A041998/A041999), 523 (A040500 and A042000/A042001), 524 (A040501 and A042002/A042003), 525 (A040502 and A042004/A042005), 526 (A040503 and A042006/A042007), 527 (A040504 and A042008/A042009), 528 (A040505 and A042010/A042011), 530 (A040506 and A042012/A042013), 531 (A040507 and A042014/A042015), 532 (A040508 and A042016/A042017), 533 (A040509 and A042018/A042019), 534 (A040510 and A042020/A042021), 535 (A040511 and A042022/A042023), 536 (A040512 and A042024/A042025), 537 (A040513 and A042026/A042027), 538 (A040514 and A042028/A042029), 539 (A040515 and A042030/A042031), 540 (A040516 and A042032/A042033), 541 (A040517 and A042034/A042035), 542 (A040518 and A042036/A042037), 543 (A040519 and A042038/A042039), 544 (A040520 and A042040/A042041), 545 (A040521 and A042042/A042043), 546 (A040522 and A042044/A042045), 547 (A040523 and A042046/A042047), 548 (A040524 and A042048/A042049), 549 (A040525 and A042050/A042051), 550 (A040526 and A042052/A042053), 551 (A040527 and A042054/A042055), 552 (A040528 and A042056/A042057), 553 (A040529 and A042058/A042059), 554 (A040530 and A042060/A042061), 555 (A040531 and A042062/A042063), 556 (A040532 and A042064/A042065), 557 (A040533 and A042066/A042067), 558 (A040534 and A042068/A042069), 559 (A040535 and A042070/A042071), 560 (A040536 and A042072/A042073), 561 (A040537 and A042074/A042075), 562 (A040538 and A042076/A042077), 563 (A040539 and A042078/A042079), 564 (A040540 and A042080/A042081), 565 (A040541 and A042082/A042083), 566 (A040542 and A042084/A042085), 567 (A040543 and A042086/A042087), 568 (A040544 and A042088/A042089), 569 (A040545 and A042090/A042091), 570 (A040546 and A042092/A042093), 571 (A040547 and A042094/A042095), 572 (A040548 and A042096/A042097), 573 (A040549 and A042098/A042099), 574 (A040550 and A042100/A042101), 575 (A040551 and A042102/A042103), 577 (A040552 and A042104/A042105), 578 (A040553 and A042106/A042107), 579 (A040554 and A042108/A042109), 580 (A040555 and A042110/A042111), 581 (A040556 and A042112/A042113), 582 (A040557 and A042114/A042115), 583 (A040558 and A042116/A042117), 584 (A040559 and A042118/A042119), 585 (A040560 and A042120/A042121), 586 (A040561 and A042122/A042123), 587 (A040562 and A042124/A042125), 588 (A040563 and A042126/A042127), 589 (A040564 and A042128/A042129), 590 (A040565 and A042130/A042131), 591 (A040566 and A042132/A042133), 592 (A040567 and A042134/A042135), 593 (A040568 and A042136/A042137), 594 (A040569 and A042138/A042139), 595 (A040570 and A042140/A042141), 596 (A040571 and A042142/A042143), 597 (A040572 and A042144/A042145), 598 (A040573 and A042146/A042147), 599 (A040574 and A042148/A042149), 600 (A040575 and A042150/A042151), 601 (A040576 and A042152/A042153), 602 (A040577 and A042154/A042155), 603 (A040578 and A042156/A042157), 604 (A040579 and A042158/A042159), 605 (A040580 and A042160/A042161), 606 (A040581 and A042162/A042163), 607 (A040582 and A042164/A042165), 608 (A040583 and A042166/A042167), 609 (A040584 and A042168/A042169), 610 (A040585 and A042170/A042171), 611 (A040586 and A042172/A042173), 612 (A040587 and A042174/A042175), 613 (A040588 and A042176/A042177), 614 (A040589 and A042178/A042179), 615 (A040590 and A042180/A042181), 616 (A040591 and A042182/A042183), 617 (A040592 and A042184/A042185), 618 (A040593 and A042186/A042187), 619 (A040594 and A042188/A042189), 620 (A040595 and A042190/A042191), 621 (A040596 and A042192/A042193), 622 (A040597 and A042194/A042195), 623 (A040598 and A042196/A042197), 624 (A040599 and A042198/A042199), 626 (A040600 and A042200/A042201), 627 (A040601 and A042202/A042203), 628 (A040602 and A042204/A042205), 629 (A040603 and A042206/A042207), 630 (A040604 and A042208/A042209), 631 (A040605 and A042210/A042211), 632 (A040606 and A042212/A042213), 633 (A040607 and A042214/A042215), 634 (A040608 and A042216/A042217), 635 (A040609 and A042218/A042219), 636 (A040610 and A042220/A042221), 637 (A040611 and A042222/A042223), 638 (A040612 and A042224/A042225), 639 (A040613 and A042226/A042227), 640 (A040614 and A042228/A042229), 641 (A040615 and A042230/A042231), 642 (A040616 and A042232/A042233), 643 (A040617 and A042234/A042235), 644 (A040618 and A042236/A042237), 645 (A040619 and A042238/A042239), 646 (A040620 and A042240/A042241), 647 (A040621 and A042242/A042243), 648 (A040622 and A042244/A042245), 649 (A040623 and A042246/A042247), 650 (A040624 and A042248/A042249), 651 (A040625 and A042250/A042251), 652 (A040626 and A042252/A042253), 653 (A040627 and A042254/A042255), 654 (A040628 and A042256/A042257), 655 (A040629 and A042258/A042259), 656 (A040630 and A042260/A042261), 657 (A040631 and A042262/A042263), 658 (A040632 and A042264/A042265), 659 (A040633 and A042266/A042267), 660 (A040634 and A042268/A042269), 661 (A040635 and A042270/A042271), 662 (A040636 and A042272/A042273), 663 (A040637 and A042274/A042275), 664 (A040638 and A042276/A042277), 665 (A040639 and A042278/A042279), 666 (A040640 and A042280/A042281), 667 (A040641 and A042282/A042283), 668 (A040642 and A042284/A042285), 669 (A040643 and A042286/A042287), 670 (A040644 and A042288/A042289), 671 (A040645 and A042290/A042291), 672 (A040646 and A042292/A042293), 673 (A040647 and A042294/A042295), 674 (A040648 and A042296/A042297), 675 (A040649 and A042298/A042299), 677 (A040650 and A042300/A042301), 678 (A040651 and A042302/A042303), 679 (A040652 and A042304/A042305), 680 (A040653 and A042306/A042307), 681 (A040654 and A042308/A042309), 682 (A040655 and A042310/A042311), 683 (A040656 and A042312/A042313), 684 (A040657 and A042314/A042315), 685 (A040658 and A042316/A042317), 686 (A040659 and A042318/A042319), 687 (A040660 and A042320/A042321), 688 (A040661 and A042322/A042323), 689 (A040662 and A042324/A042325), 690 (A040663 and A042326/A042327), 691 (A040664 and A042328/A042329), 692 (A040665 and A042330/A042331), 693 (A040666 and A042332/A042333), 694 (A040667 and A042334/A042335), 695 (A040668 and A042336/A042337), 696 (A040669 and A042338/A042339), 697 (A040670 and A042340/A042341), 698 (A040671 and A042342/A042343), 699 (A040672 and A042344/A042345), 700 (A040673 and A042346/A042347), 701 (A040674 and A042348/A042349), 702 (A040675 and A042350/A042351), 703 (A040676 and A042352/A042353), 704 (A040677 and A042354/A042355), 705 (A040678 and A042356/A042357), 706 (A040679 and A042358/A042359), 707 (A040680 and A042360/A042361), 708 (A040681 and A042362/A042363), 709 (A040682 and A042364/A042365), 710 (A040683 and A042366/A042367), 711 (A040684 and A042368/A042369), 712 (A040685 and A042370/A042371), 713 (A040686 and A042372/A042373), 714 (A040687 and A042374/A042375), 715 (A040688 and A042376/A042377), 716 (A040689 and A042378/A042379), 717 (A040690 and A042380/A042381), 718 (A040691 and A042382/A042383), 719 (A040692 and A042384/A042385), 720 (A040693 and A042386/A042387), 721 (A040694 and A042388/A042389), 722 (A040695 and A042390/A042391), 723 (A040696 and A042392/A042393), 724 (A040697 and A042394/A042395), 725 (A040698 and A042396/A042397), 726 (A040699 and A042398/A042399), 727 (A040700 and A042400/A042401), 728 (A040701 and A042402/A042403), 730 (A040702 and A042404/A042405), 731 (A040703 and A042406/A042407), 732 (A040704 and A042408/A042409), 733 (A040705 and A042410/A042411), 734 (A040706 and A042412/A042413), 735 (A040707 and A042414/A042415), 736 (A040708 and A042416/A042417), 737 (A040709 and A042418/A042419), 738 (A040710 and A042420/A042421), 739 (A040711 and A042422/A042423), 740 (A040712 and A042424/A042425), 741 (A040713 and A042426/A042427), 742 (A040714 and A042428/A042429), 743 (A040715 and A042430/A042431), 744 (A040716 and A042432/A042433), 745 (A040717 and A042434/A042435), 746 (A040718 and A042436/A042437), 747 (A040719 and A042438/A042439), 748 (A040720 and A042440/A042441), 749 (A040721 and A042442/A042443), 750 (A040722 and A042444/A042445), 751 (A040723 and A042446/A042447), 752 (A040724 and A042448/A042449), 753 (A040725 and A042450/A042451), 754 (A040726 and A042452/A042453), 755 (A040727 and A042454/A042455), 756 (A040728 and A042456/A042457), 757 (A040729 and A042458/A042459), 758 (A040730 and A042460/A042461), 759 (A040731 and A042462/A042463), 760 (A040732 and A042464/A042465), 761 (A040733 and A042466/A042467), 762 (A040734 and A042468/A042469), 763 (A040735 and A042470/A042471), 764 (A040736 and A042472/A042473), 765 (A040737 and A042474/A042475), 766 (A040738 and A042476/A042477), 767 (A040739 and A042478/A042479), 768 (A040740 and A042480/A042481), 769 (A040741 and A042482/A042483), 770 (A040742 and A042484/A042485), 771 (A040743 and A042486/A042487), 772 (A040744 and A042488/A042489), 773 (A040745 and A042490/A042491), 774 (A040746 and A042492/A042493), 775 (A040747 and A042494/A042495), 776 (A040748 and A042496/A042497), 777 (A040749 and A042498/A042499), 778 (A040750 and A042500/A042501), 779 (A040751 and A042502/A042503), 780 (A040752 and A042504/A042505), 781 (A040753 and A042506/A042507), 782 (A040754 and A042508/A042509), 783 (A040755 and A042510/A042511), 785 (A040756 and A042512/A042513), 786 (A040757 and A042514/A042515), 787 (A040758 and A042516/A042517), 788 (A040759 and A042518/A042519), 789 (A040760 and A042520/A042521), 790 (A040761 and A042522/A042523), 791 (A040762 and A042524/A042525), 792 (A040763 and A042526/A042527), 793 (A040764 and A042528/A042529), 794 (A040765 and A042530/A042531), 795 (A040766 and A042532/A042533), 796 (A040767 and A042534/A042535), 797 (A040768 and A042536/A042537), 798 (A040769 and A042538/A042539), 799 (A040770 and A042540/A042541), 800 (A040771 and A042542/A042543), 801 (A040772 and A042544/A042545), 802 (A040773 and A042546/A042547), 803 (A040774 and A042548/A042549), 804 (A040775 and A042550/A042551), 805 (A040776 and A042552/A042553), 806 (A040777 and A042554/A042555), 807 (A040778 and A042556/A042557), 808 (A040779 and A042558/A042559), 809 (A040780 and A042560/A042561), 810 (A040781 and A042562/A042563), 811 (A040782 and A042564/A042565), 812 (A040783 and A042566/A042567), 813 (A040784 and A042568/A042569), 814 (A040785 and A042570/A042571), 815 (A040786 and A042572/A042573), 816 (A040787 and A042574/A042575), 817 (A040788 and A042576/A042577), 818 (A040789 and A042578/A042579), 819 (A040790 and A042580/A042581), 820 (A040791 and A042582/A042583), 821 (A040792 and A042584/A042585), 822 (A040793 and A042586/A042587), 823 (A040794 and A042588/A042589), 824 (A040795 and A042590/A042591), 825 (A040796 and A042592/A042593), 826 (A040797 and A042594/A042595), 827 (A040798 and A042596/A042597), 828 (A040799 and A042598/A042599), 829 (A040800 and A042600/A042601), 830 (A040801 and A042602/A042603), 831 (A040802 and A042604/A042605), 832 (A040803 and A042606/A042607), 833 (A040804 and A042608/A042609), 834 (A040805 and A042610/A042611), 835 (A040806 and A042612/A042613), 836 (A040807 and A042614/A042615), 837 (A040808 and A042616/A042617), 838 (A040809 and A042618/A042619), 839 (A040810 and A042620/A042621), 840 (A040811 and A042622/A042623), 842 (A040812 and A042624/A042625), 843 (A040813 and A042626/A042627), 844 (A040814 and A042628/A042629), 845 (A040815 and A042630/A042631), 846 (A040816 and A042632/A042633), 847 (A040817 and A042634/A042635), 848 (A040818 and A042636/A042637), 849 (A040819 and A042638/A042639), 850 (A040820 and A042640/A042641), 851 (A040821 and A042642/A042643), 852 (A040822 and A042644/A042645), 853 (A040823 and A042646/A042647), 854 (A040824 and A042648/A042649), 855 (A040825 and A042650/A042651), 856 (A040826 and A042652/A042653), 857 (A040827 and A042654/A042655), 858 (A040828 and A042656/A042657), 859 (A040829 and A042658/A042659), 860 (A040830 and A042660/A042661), 861 (A040831 and A042662/A042663), 862 (A040832 and A042664/A042665), 863 (A040833 and A042666/A042667), 864 (A040834 and A042668/A042669), 865 (A040835 and A042670/A042671), 866 (A040836 and A042672/A042673), 867 (A040837 and A042674/A042675), 868 (A040838 and A042676/A042677), 869 (A040839 and A042678/A042679), 870 (A040840 and A042680/A042681), 871 (A040841 and A042682/A042683), 872 (A040842 and A042684/A042685), 873 (A040843 and A042686/A042687), 874 (A040844 and A042688/A042689), 875 (A040845 and A042690/A042691), 876 (A040846 and A042692/A042693), 877 (A040847 and A042694/A042695), 878 (A040848 and A042696/A042697), 879 (A040849 and A042698/A042699), 880 (A040850 and A042700/A042701), 881 (A040851 and A042702/A042703), 882 (A040852 and A042704/A042705), 883 (A040853 and A042706/A042707), 884 (A040854 and A042708/A042709), 885 (A040855 and A042710/A042711), 886 (A040856 and A042712/A042713), 887 (A040857 and A042714/A042715), 888 (A040858 and A042716/A042717), 889 (A040859 and A042718/A042719), 890 (A040860 and A042720/A042721), 891 (A040861 and A042722/A042723), 892 (A040862 and A042724/A042725), 893 (A040863 and A042726/A042727), 894 (A040864 and A042728/A042729), 895 (A040865 and A042730/A042731), 896 (A040866 and A042732/A042733), 897 (A040867 and A042734/A042735), 898 (A040868 and A042736/A042737), 899 (A040869 and A042738/A042739), 901 (A040870 and A042740/A042741), 902 (A040871 and A042742/A042743), 903 (A040872 and A042744/A042745), 904 (A040873 and A042746/A042747), 905 (A040874 and A042748/A042749), 906 (A040875 and A042750/A042751), 907 (A040876 and A042752/A042753), 908 (A040877 and A042754/A042755), 909 (A040878 and A042756/A042757), 910 (A040879 and A042758/A042759), 911 (A040880 and A042760/A042761), 912 (A040881 and A042762/A042763), 913 (A040882 and A042764/A042765), 914 (A040883 and A042766/A042767), 915 (A040884 and A042768/A042769), 916 (A040885 and A042770/A042771), 917 (A040886 and A042772/A042773), 918 (A040887 and A042774/A042775), 919 (A040888 and A042776/A042777), 920 (A040889 and A042778/A042779), 921 (A040890 and A042780/A042781), 922 (A040891 and A042782/A042783), 923 (A040892 and A042784/A042785), 924 (A040893 and A042786/A042787), 925 (A040894 and A042788/A042789), 926 (A040895 and A042790/A042791), 927 (A040896 and A042792/A042793), 928 (A040897 and A042794/A042795), 929 (A040898 and A042796/A042797), 930 (A040899 and A042798/A042799), 931 (A040900 and A042800/A042801), 932 (A040901 and A042802/A042803), 933 (A040902 and A042804/A042805), 934 (A040903 and A042806/A042807), 935 (A040904 and A042808/A042809), 936 (A040905 and A042810/A042811), 937 (A040906 and A042812/A042813), 938 (A040907 and A042814/A042815), 939 (A040908 and A042816/A042817), 940 (A040909 and A042818/A042819), 941 (A040910 and A042820/A042821), 942 (A040911 and A042822/A042823), 943 (A040912 and A042824/A042825), 944 (A040913 and A042826/A042827), 945 (A040914 and A042828/A042829), 946 (A040915 and A042830/A042831), 947 (A040916 and A042832/A042833), 948 (A040917 and A042834/A042835), 949 (A040918 and A042836/A042837), 950 (A040919 and A042838/A042839), 951 (A040920 and A042840/A042841), 952 (A040921 and A042842/A042843), 953 (A040922 and A042844/A042845), 954 (A040923 and A042846/A042847), 955 (A040924 and A042848/A042849), 956 (A040925 and A042850/A042851), 957 (A040926 and A042852/A042853), 958 (A040927 and A042854/A042855), 959 (A040928 and A042856/A042857), 960 (A040929 and A042858/A042859), 962 (A040930 and A042860/A042861), 963 (A040931 and A042862/A042863), 964 (A040932 and A042864/A042865), 965 (A040933 and A042866/A042867), 966 (A040934 and A042868/A042869), 967 (A040935 and A042870/A042871), 968 (A040936 and A042872/A042873), 969 (A040937 and A042874/A042875), 970 (A040938 and A042876/A042877), 971 (A040939 and A042878/A042879), 972 (A040940 and A042880/A042881), 973 (A040941 and A042882/A042883), 974 (A040942 and A042884/A042885), 975 (A040943 and A042886/A042887), 976 (A040944 and A042888/A042889), 977 (A040945 and A042890/A042891), 978 (A040946 and A042892/A042893), 979 (A040947 and A042894/A042895), 980 (A040948 and A042896/A042897), 981 (A040949 and A042898/A042899), 982 (A040950 and A042900/A042901), 983 (A040951 and A042902/A042903), 984 (A040952 and A042904/A042905), 985 (A040953 and A042906/A042907), 986 (A040954 and A042908/A042909), 987 (A040955 and A042910/A042911), 988 (A040956 and A042912/A042913), 989 (A040957 and A042914/A042915), 990 (A040958 and A042916/A042917), 991 (A040959 and A042918/A042919), 992 (A040960 and A042920/A042921), 993 (A040961 and A042922/A042923), 994 (A040962 and A042924/A042925), 995 (A040963 and A042926/A042927), 996 (A040964 and A042928/A042929), 997 (A040965 and A042930/A042931), 998 (A040966 and A042932/A042933), 999 (A040967 and A042934/A042935), 1000 (A040968 and A042936/A042937), 1729 (A053342).
continued fractions for constants: Sum_{n>=0} 1/2^(2^n) (A007400), Sum_{k>=2} 2^(-Fibonacci(k)) (A006518), Sum_{m>=0} 1/(2^2^m - 1) (A048650)
continued fractions for constants: tan(1) (A009001), tan(1/n) n=2 to 10 (A019423+n)
continued fractions for constants: Trott's (A039663), Wallis' number (A058297), Wirsing's (A007515), prime constant (A051007), root of x^5-x-1 (A039922)
continued fractions for constants: zeta(2) = Pi^2/6 (A013679), zeta(3) (A013631), zeta(4) (A013680)
continued fractions, for sqrt(n), length of period: A003285*, A097853

contours: A006021
convenient numbers: A000926
conventions in OEIS: see spelling and notation

convergents , sequences related to :
convergents (1):: A002363, A007676, A002356, A005663, A006279, A002355, A005664, A002358, A002795, A002353, A002360, A007509, A005484, A002364
convergents (2):: A007677, A002351, A002357, A002354, A002794, A001517, A002485, A002352, A002359, A002361, A005668, A002362, A002119, A002486, A005485

convert from base 10 to base n (or vice versa): A006937, A023372, A023378, A023383, A023387, A023390, A008557, A023392, A010692
convert from decimal to binary: A006937, A006938
convex lattice polygons: A063984, A070911, A089187

convolution , sequences related to :
convolution of natural numbers :: A007466
convolution of triangular numbers :: A007465
Convolutional codes:: A007223, A007224, A007225, A007227, A007226, A007228, A007229
Convolutions:: A007477, A006013, A001938, A000385, A005798, A007556
Convolved Fibonacci numbers:: A001629, A001628, A001872, A001873, A001874, A001875

Conway , sequences related to :
Conway group Con.0: A008924
Conway sequences:: A007012, A004001, A005940, A005941, A003681, A007542, A007471, A003634, A007547, A003635
Conway, sequences made famous by: A004001*, A005150*
Conway-Guy rapidly growing sequence: A046859
Conway-Guy sequence: A005318*, A006755, A006368*, A006754, A006756, A006757

coordination sequences, sequences related to :
coordination sequences: for A_n root lattices: A005901, A008383, A008385, A008387, A008389, A008391, A008393, A008395, and A035837 through A035876
coordination sequences: for B_n root lattices: A022144 through A022154, A107546 through A107571, and A108000 through A108011
coordination sequences: for C_n root lattices: A010006, A019560 through A019564, and A035746 through A035787
coordination sequences: for D_n root lattices: A005901, A007900, A008355, A008357, A008359, A008361, A008376, A008378, and A107506 through A107545
coordination sequences: see also crystal ball sequences
coordination sequences: see also under names of individual lattices

Coprime sequences:: A003139, A003140, A002716, A002715


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools