login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047216 Numbers that are congruent to {1, 2} mod 5. 24
1, 2, 6, 7, 11, 12, 16, 17, 21, 22, 26, 27, 31, 32, 36, 37, 41, 42, 46, 47, 51, 52, 56, 57, 61, 62, 66, 67, 71, 72, 76, 77, 81, 82, 86, 87, 91, 92, 96, 97, 101, 102, 106, 107, 111, 112, 116, 117, 121, 122, 126, 127, 131, 132, 136, 137, 141, 142, 146, 147 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, numbers ending in 1, 2, 6 and 7. - Bruno Berselli, Sep 04 2018

LINKS

Table of n, a(n) for n=1..60.

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(n) = 5*n-a(n-1)-7 for n>1, with a(1)=1. - Vincenzo Librandi, Aug 05 2010

G.f.: x*(1+x+3*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011

From Bruno Berselli, Mar 10 2012: (Start)

a(n) = (10*n-3*(-1)^n-9)/4.

a(n) = - A176059(n) + Sum_{i=0..n-1} A176059(i). (End)

From Wesley Ivan Hurt, Dec 29 2016: (Start)

a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.

a(2*k) = 5*k-3, a(2*k-1) = 5*k-4. (End)

MAPLE

A047216:=n->(10*n-3*(-1)^n-9)/4: seq(A047216(n), n=1..100); # Wesley Ivan Hurt, Dec 29 2016

MATHEMATICA

Select[Range[0, 200], MemberQ[{1, 2}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)

PROG

(PARI) a(n)=(n-1)\2*5+2-n%2 \\ Charles R Greathouse IV, Dec 22 2011

(MAGMA) [(10*n-3*(-1)^n-9)/4 : n in [1..100]]; // Wesley Ivan Hurt, Dec 29 2016

CROSSREFS

Cf. A047209, A047211, A047212, A176059.

Sequence in context: A287688 A221847 A283766 * A244970 A242330 A039568

Adjacent sequences:  A047213 A047214 A047215 * A047217 A047218 A047219

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 00:37 EST 2020. Contains 332006 sequences. (Running on oeis4.)