login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020990 a(n) = Sum_{k=0..n} (-1)^k*A020985(k). 1
1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 10, 9, 8, 9, 8, 9, 10, 9, 10, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

Brillhart, John; Morton, Patrick. Über Summen von Rudin-Shapiroschen Koeffizienten. (German) Illinois J. Math. 22 (1978), no. 1, 126--148. MR0476686 (57 #16245) - From N. J. A. Sloane, Jun 06 2012

J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

Brillhart and Morton (1978) list many properties.

PROG

(Haskell)

a020990 n = a020990_list !! n

a020990_list = scanl1 (+) $ zipWith (*) a033999_list a020985_list

-- Reinhard Zumkeller, Jun 06 2012

CROSSREFS

Cf. A033999.

Sequence in context: A165592 A059285 A165578 * A260686 A037891 A037899

Adjacent sequences:  A020987 A020988 A020989 * A020991 A020992 A020993

KEYWORD

nonn

AUTHOR

N. J. A. Sloane. Edited by N. J. A. Sloane, Jun 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 11:26 EST 2016. Contains 278939 sequences.