

A020990


a(n) = Sum_{k=0..n} (1)^k*A020985(k).


1



1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 10, 9, 8, 9, 8, 9, 10, 9, 10, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


REFERENCES

Brillhart, John; Morton, Patrick. Über Summen von RudinShapiroschen Koeffizienten. (German) Illinois J. Math. 22 (1978), no. 1, 126148. MR0476686 (57 #16245)  From N. J. A. Sloane, Jun 06 2012
J. Brillhart and P. Morton, A case study in mathematical research: the GolayRudinShapiro sequence, Amer. Math. Monthly, 103 (1996) 854869.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000


FORMULA

Brillhart and Morton (1978) list many properties.


PROG

(Haskell)
a020990 n = a020990_list !! n
a020990_list = scanl1 (+) $ zipWith (*) a033999_list a020985_list
 Reinhard Zumkeller, Jun 06 2012


CROSSREFS

Cf. A033999.
Sequence in context: A165592 A059285 A165578 * A037891 A037899 A037837
Adjacent sequences: A020987 A020988 A020989 * A020991 A020992 A020993


KEYWORD

nonn


AUTHOR

N. J. A. Sloane. Edited by N. J. A. Sloane, Jun 06 2012


STATUS

approved



