login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020990 a(n) = Sum_{k=0..n} (-1)^k*A020985(k). 1
1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 10, 9, 8, 9, 8, 9, 10, 9, 10, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

Brillhart, John; Morton, Patrick. Über Summen von Rudin-Shapiroschen Koeffizienten. (German) Illinois J. Math. 22 (1978), no. 1, 126--148. MR0476686 (57 #16245) - From N. J. A. Sloane, Jun 06 2012

J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

Brillhart and Morton (1978) list many properties.

PROG

(Haskell)

a020990 n = a020990_list !! n

a020990_list = scanl1 (+) $ zipWith (*) a033999_list a020985_list

-- Reinhard Zumkeller, Jun 06 2012

CROSSREFS

Cf. A033999.

Sequence in context: A165592 A059285 A165578 * A037891 A037899 A037837

Adjacent sequences:  A020987 A020988 A020989 * A020991 A020992 A020993

KEYWORD

nonn

AUTHOR

N. J. A. Sloane. Edited by N. J. A. Sloane, Jun 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 27 15:19 EDT 2015. Contains 261092 sequences.