This site is supported by donations to The OEIS Foundation.

# Index to OEIS: Section Di

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]

Diagonal length function:: A006264

##### diagonal sequences, sequences related to :
diagonal sequences: A051070 = A_n(n) respecting the offset, A091967 = A_n(n) ignoring offset, A107357 = 1 + A_n(n) respecting offset, A102288 = 1 + A_n(n) ignoring offset
diagonal sequences: incorrect versions: A031135, A037181

diagrams, circular: A007474
Diagrams:: A004300, A000699
Diameters:: A007285

##### diamond structure, sequences related to :
diamond structure, theta series of: A005925*
diamond structure:: A005926, A002930, A001395, A005925, A003195, A007216, A005927, A003212, A003119, A001394, A002923, A001397, A001396, A002895, A002922, A003208, A003220, A001398

difference between next prime and previous prime for terms of various sequences: see under previous prime
Difference equations:: A005921, A005923, A005922, A005924

##### difference of two cubes , sequences related to :
difference of two cubes (01): A014439, A014440, A014441, A034179, A038593, A038594, A038595, A038596, A038597, A038598, A038632, A038673
difference of two cubes (02): A038808, A038847, A038848, A038849, A038850, A038851, A038852, A038853, A038854, A038855, A038856, A038857
difference of two cubes (03): A038858, A038859, A038860, A038861, A038862, A038863, A038864, A051393, A085367, A085377, A086121, A098110
difference of two cubes (04): A125063, A129965, A087786, A045980, A085479, A152043

differences = complement: see entry for sequence and first differences include all numbers, etc.

##### differences of 0, sequences related to :
differences of 0: A000919, A000920, A001117, A001118, A002051, A002456, A019538

Differences of reciprocals of unity:: A000424, A001240, A001236, A001237, A001241, A001238, A001242
differences of two cubes, see difference of two cubes
differences of zero, see differences of 0
Differences periodic:: A002081

##### differential equations, sequences related to :
differential equations:: A000997, A000995, A000994, A000996, A005443, A000998, A005444, A005442, A005445

differential structures: A001676*
digamma: A001620 (1), A020759 (1/2), A047787 (1/3), A200064 (2/3), A020777 (1/4), A200134 (3/4), A200135 (1/5), A200136 (2/5), A200137 (3/5), A200138 (4/5), A222457 (1/6), A222458 (5/6), A354627 (1/7), A354628 (2/7), A354629 (3/7), A354630 (4/7), A354631 (5/7), A354632 (6/7), A250129 (1/8), A354633 (3/8), A354634 (5/8), A354635 (7/8), A354636 (1/9), A354637 (2/9), A354638 (4/9), A354639 (5/9), A354640 (7/9), A354641 (8/9), A306716 (1/10), A354642 (3/10), A354643 (7/10), A354644 (9/10)
digitaddition sequences: see Columbian or self numbers

##### digital , sequences related to digital root, sum, etc. :
digital root: A010888*
digital root: number of n-digit numbers with nonzero multiplicative digital root A051812, A051813, A051814, A051815, A051816, A051817, A051818, A051819, A051820
digital root: number of n-digit numbers with zero multiplicative digital root A051821, A051822, A051823, A051824, A051825, A051826, A051827, A051828, A051829
digital root: numbers with multiplicative digital root A034048, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056
digital root: numbers with nonzero multiplicative digital root A051803, A051804, A051805, A051806, A051807, A051808, A051809, A051810, A051811
digital sum: A007953*
##### digits, sequences related to:

digits, final: see final digits
digits, last: see final digits
digits, maps acting on:

replace digit P by Q and vice versa: A222210, A222211, ..., A222264 (PQ = 01, 02, ..., 89).
acting on primes: A171013, A171014, A171015, A171016, A175770, A171018, ..., A171057.
replace prime digits with 0, others with 1: A087380
primes remain prime when digits are replaced: A068492 (d → d²), A175791, ..., A175789 (P <-> Q as above), A091932 (leading binary digit is replaced by 0)

digits, product of ~ divides sum of ~: A055931.
digits, sum of ~ divides product of ~: A061013 (a.k.a. perfect years), A038367 (same with 0 allowed).
digits, sums of squares of: A003132

##### digraphs (or directed graphs), sequences related to :
digraphs : A000273* (unlabeled), A053763* (labeled)
digraphs, 2-regular, A007107, A007108
digraphs, acyclic: A003087 (unlabeled), A003024 (labeled), A082402 (connected labeled)
digraphs, acyclic: by number of out-points: A003025, A003026
digraphs, connected: A003085*
digraphs, Eulerian, A007080, A007105
digraphs, mating, A006023, A006025
digraphs, regular, A005641, A005642
digraphs, self-complementary, A003086
digraphs, self-converse, A002499
digraphs, semi-regular, A003286, A005535
digraphs, subgraphs of, A005014, A005016, A005327, A005328, A005329, A005330, A005331, A005332
digraphs, switching classes of: A006536*
digraphs, transitive: A000798* (labeled), A001930* (unlabeled)
digraphs, triangle of numbers of: (1) A052296, A054733, A057270, A057271, A057272, A057273, A057274, A057275, A057276, A057277, A057278, A057279
digraphs, triangle of numbers of: (2) A058876
digraphs, unilateral, A003029, A003088
digraphs, weakly connected, A003027
digraphs, weakly distance-regular: A057560
digraphs, with same converse as complement, A003069

digsum: A007953
Dimensions:: A007478, A007473, A007182, A006973, A007293, A003038, A001776

##### Diophantine equations: sequences related to :
Diophantine equal sums of like powers: A009003 (2,1,2), A005767 (2,1,3), A023042 (3,1,3), A274334 (3,1,4), A003828 (4,1,3), A003294 (4,1,4), A134341 (5,1,4), A063923 (5,1,5), A365008 (5,1,6), A365020 (5,1,7), A132410 (6,1,7), A364968 (6,1,8)
Diophantine equations, x1 x2 + x2 x3 + ... + xk x{k+1} = n: A000005, A065608, A002133, A189835, A191822, A191832
Diophantine equations:: A006452, A006451, A006454
Diophantine exponential:

Dirac delta function: A000007*
directed graphs, see digraphs
Diregular:: A005642, A005641
Dirichlet divisor problem: A006218

##### Dirichlet series: sequences related to :
Dirichlet series: PARI examples: (01) A031358, A145390
Dirichlet series: PARI examples: (02) A000005, A000082, A000086, A000203, A000377, A001157, A001227, A001615, A002131, A002654, A003958, A003959
Dirichlet series: PARI examples: (03) A007425, A007427, A007429, A007430, A007431, A008683, A003421, A003420, A003419, A002558, A003521
##### discordant, sequences related to :
discordant:: A002634, A000183, A002633, A000270, A000380, A000388, A000561, A000440, A000562, A000470, A000563, A000476, A000492, A000564, A000500, A000565
##### discriminants , sequences related to :
discriminants of imaginary quadratic fields with class number (negated): (1) 1: A014602, 2: A014603, 3: A006203, 4: A013658, 5: A046002, 6: A046003, 7: A046004, 8: A046005, 9: A046006, 10: A046007, 11: A046008, 12: A046009, 13: A046010,
discriminants of imaginary quadratic fields with class number (negated): (2) 14: A046011, 15: A046012, 16: A046013, 17: A046014, 18: A046015, 19: A046016, 21: A046018, 23: A046020, 24: A048925, 25: A056987,
discriminants of real quadratic fields by class nunber: A050950-A050969, A051962-A051965
Discriminants:: A006555, A006554
Discriminants:: of fields, A003171, A003657, A003644, A003658, A003656, A003246, A003653, A006832, A002769
Discriminants:: of polynomials, A004124, A007701, A001782, A006312

discriminators of sequences: A016726, A062383, A192419, A192420, A270097, A270097, A270151, A272633, A272634, A272649, A272881
discriminators of sequences (cont.): let D denote discriminator. Then D(A000027) -> A000027, D(A000062) -> A000062, D(A000069) -> A062383, D(A000124) -> A062383, D(A000217) -> A062383, D(A000384) -> A062383, D(A000447) -> A062383, D(A001068) -> A047201, D(A001109) -> A062383, D(A001477) -> A000027, D(A001637) -> A000027, D(A001651) -> A001651, D(A001824) -> A062383, D(A001955) -> A001955, D(A001961) -> A001961, D(A002180) -> A002180, D(A002473) -> A002473
Disjunctive:: A003039, A005616, A005739
Disk:: A005497, A002710, A002712, A004305, A001683, A002713, A005495, A002711, A002709, A005499, A005498

##### dismal arithmetic (or lunar arithmetic), sequences related to :
We have changed the name. The new name is lunar arithmetic. The old name, dismal arithmetic, was too dismal.
dismal arithmetic : A087061 (addition), A087062 (multiplication, Maple code)
dismal arithmetic, base 2: A067398*, A190820, A191342 (squares), A067139 (primes), A048888, A079500, A008466
dismal arithmetic, base 3: A171396 (squares), A130206, A170806 and A191366 (primes)
dismal arithmetic, factorials: A189788
dismal arithmetic, in other bases, primes: A067139, A169912, A171000, A130206, A170806, A171017, A171122, A171123, A171124, A171125, A171133, A171143, A171144, A171167, A171168, A171169, A171221, A087097*, A087636, A087638, A084666
dismal arithmetic, in other bases, squares: A067398, A171222, A171234, A171396, A171458, A171460, A171558, A171564, A171578, A171591, A171594, A171596, A171635, A171644, A171679, A171717, A087019
dismal arithmetic, in other bases, triangular numbers: A003817, A171230, A171438, A171446, A171464, A171483, A171572, A171573, A171592, A171593, A171597, A171610, A171649, A171678, A171722, A171723, A087052
dismal arithmetic, partitions: A054244, A087079
dismal arithmetic, perfect numbers: see comment in A087416
dismal arithmetic, primes in various bases: A067139, A130206, A170806, A171017, A171122, A171123, A171124, A171125, A171133, A171143, A171144, A171167, A171168, A171169, A171221, A171750, A171752
dismal arithmetic, primes: A087097*, A087636, A087638, A084666
dismal arithmetic, square roots: A202082, A202174
dismal arithmetic, squares in various bases: A067398, A171222, A171234, A171396, A171458, A171460, A171558, A171564, A171578, A171591, A171594, A171596, A171635, A171644, A171679, A171717
dismal arithmetic, sum of divisors in various bases: A188548, A190632, A087416
dismal arithmetic: A087019 (squares), A087052 (triangulars), A087036 (cubes), A087051 (4th powers), A087028 and A087029 (divisors), A087079 (partitions), A087121, A087416, A087082 and A087083 (sum of divisors), A162672 or A171818 ("even" numbers)
##### dissections, sequences related to :
dissections, of a polygon (1):: A001004, A003455, A000063, A005036, A003456, A000131, A003450, A003454, A003452, A000150, A005034, A003447, A005040, A003445
dissections, of a polygon (2):: A003442, A005038, A000207, A003453, A003449, A003441, A001002, A003448, A005419, A003443, A003451, A003444, A005035, A002293
dissections, of a polygon (3):: A005039, A005033, A005037, A002295, A002296, A002055, A002056, A007160
dissections, of rectangles: A049021*
dissections, of regular polygons to regular polygons: A110000, A110312, A110316
dissections of triangle: A093603, A097604; A005792 (congruent pieces), A074764 (similar pieces)
dissections: A000207*
Dissections:: of a ball, A001763, A001762
Dissections:: of a disk, A001761
##### distance to nearest element of some set, sequences related to :
distance to nearest cube: A074989
distance to nearest Fibonnacci number: A296239
distance to nearest oblong number: A053615
distance to nearest power of 2: A053646
distance to nearest power of 3: A081134
distance to nearest power: A061670
distance to nearest prime: A051699
distance to nearest square: A053188
distance to nearest triangular number: A053616
##### distinct prime factors, sequences related to :
distinct prime factors: at least 1: A000027 2: A024619 3: A000977
distinct prime factors: at most 1: A000961 2: A070915
distinct prime factors: exactly 1: A000961 2: A007774 3: A033992 4: A033993 5: A051270 6: A074969
distinct prime factors: number of A001221
distinct prime factors: table of: A125666

Distribution problem:: A002018
divergent series: A002387, A092324, A092267, A092753
divided sequences, or k-divided sequences: Number of k-divided words of length n over alphabet of size A:

A=2, k=2,3,4,5: A209970 (and A209919, A000031, A001037), A210109 (and A210145), A210321, A210322;
A=3, k=2,3,4,5: A210323 (and A001867, A027376), A210324, A210325, A210326;
A=4, k=2,3,4: A210424 (and A001868, A027377), A210425, A210426.
##### divisibility sequences , sequences related to :
divisibility sequences ( 1): A000522, A001339, A002248, A002452, A003757, A005013, A005120, A005178, A006238, A006720, A006769, A007434
divisibility sequences ( 2): A039834, A051138, A058939, A059928, A060478, A082030, A086892, A087612, A087612, A095000, A095177, A105309
divisibility sequences ( 3): A115000, A116201, A127595, A133394, A138573, A141827, A141828, A143699, A152090, A140824
divisibility sequences, 3rd order: A003690, Number of spanning trees in K_3 X P_n
divisibility sequences, 3rd order: A004146, Alternate Lucas numbers - 2
divisibility sequences, 3rd order: A005386, Area of n-th triple of squares around a triangle
divisibility sequences, 3rd order: A006253, Number of perfect matchings (or domino tilings) in C_4 X P_n
divisibility sequences, 3rd order: A007654, Numbers n such that standard deviation of 1,...,n is an integer
divisibility sequences, 4th order: A001350, Associated Mersenne numbers
divisibility sequences, 4th order: A002248, Number of points on y^2+xyA003773, Number of spanning trees in K_4 X P_n
divisibility sequences, 4th order: A006238, Complexity of (or spanning trees in) a 3 X n grid
divisibility sequences, 6th order: A001351, Associated Mersenne numbers
divisibility sequences, 6th order: A001945, a(n+6) A003755, Number of spanning trees in S_4 X P_n
divisibility sequences, 6th order: A005120, a(n+6) A006235, Complexity of doubled cycle
divisibility sequences, 8th order: A005822, Number of spanning trees in third power of cycle
divisibility sequences, 8th order: A028468, Number of perfect matchings in graph P_{6} X P_{n}
divisibility sequences: A001542 = 2 * (A001109)
divisibility sequences: A003645(n) = 2^n*Cat(n+1) = A000079(n)*A000108(n+1)
divisibility sequences: A003690 = 3 * (A004254)^2
divisibility sequences: A003696 = (A001353) * (A161158)
divisibility sequences: A003733 = 5 * (A143699)^2
divisibility sequences: A003739 = 5 * (A001906)^2 * (A161159)
divisibility sequences: A003745 = 3 * 5^2 * (A004254) * (A004187)^3
divisibility sequences: A003751 = 5^3 * (A004187)^4
divisibility sequences: A003753 = 2^2 * (A001109) * (A001353)^2 = 2 * (A001542) * (A001353)^2
divisibility sequences: A003755 = (A001109) * (A001906)^2
divisibility sequences: A003761 = (A001906) * (A004254) * (A001109)
divisibility sequences: A003767 = 2^3 * (A001353) * (A001109)^2
divisibility sequences: A003773 = 2 * (A001542)^3 = 2^4 * (A001109)^3
divisibility sequences: A005159(n) = 3^n*Cat(n), that is, A005159 = A000244*A000108
divisibility sequences: A005319 = 4*A001109
divisibility sequences: A092136 = (A004187) * (A001906)^3
divisibility sequences: A106328 = 3*A001109
divisibility sequences: A139400 = (A001906) * (A001353) * (A004254) * (A161498)
divisibilty of sums of primes: see Index to sums of powers of primes divisibility sequences

divisible by each digit: A002796*, A034838*, A034709
divisible by product of digits: A007602*
divisible sequences: see divided sequences
divisor chains: A067957*, A093313, A093314, A093315, A094097, A094098, A094099

##### divisors, sequences related to :
divisors, aliquot: A032741*, A001065* (sum of), A027751 (list of)
divisors, anti: A066272
divisors, average of, A003601, A006218
divisors, inverse to d(n), A005179
divisors, isolated: A133779 (triangle), A132881 (number)
divisors, largest prime power: A053585
divisors, largest prime: A006530*
divisors, largest: A032742*
divisors, list of: A027750
divisors, middle: A067742*, A071090
divisors, nontrivial (or proper): A070824 (divisors of n in the range 1 < d < n), A137510
divisors, nontrivial: often used incorrectly to refer to aliquot divisors (see divisors, aliquot)
divisors, number of (denoted by d(n)): A000005*, A002182* and A067128, A034287 (records), A001227 (odd)
divisors, number of (d(n)): see also (1): A002324, A002175, A002183, A002131, A005179 (inverse function to d(n)), A002132, A002133, A002134, A003680, A005237, A002130, A002191, A002127, A002128
divisors, number of (d(n)): see also (2): A002129, A002173, A000441, A002961, A000477, A000499
divisors, number of, tables listing numbers according to: A073915, A119586
divisors, numbers having 2-10: A000040, A001248, A030513, A030514, A030515, A030516, A030626, A030627, A030628
divisors, numbers having 11-20: A030629, A030630, A030631, A030632, A030633, A030634, A030635, A030636, A030637, A030638
divisors, numbers having 21-30: A137484, A137485, A137486, A137487, A137488, A137489, A137490, A137491, A137492, A137493
divisors, numbers having 31-36: A139571, A175742, A175743, A175744, A175745, A175746
divisors, numbers having selected larger numbers of: A175747 (38), A175748 (39), A175749 (40), A175750 (42), A175751 (44), A175752 (45), A175753 (46), A175754 (48), A175755 (49), A175756 (50), A172443 (64)
divisors, odd: A001227
divisors, of 10^k-1 or 10^k or 10^k+1: (01) k=2 A018283, k=3 A018766 A018767 A018768, k=4 A027894 A133020,
divisors, of 10^k-1 or 10^k or 10^k+1: (02) k=5 A027893, k=6 A027892 A159765, k=7 A027891, k=8 A027890,
divisors, of 10^k-1 or 10^k or 10^k+1: (03) k=9 A027889 A027901, k=10 A027895 A027900, k=11 A027896 A027899,
divisors, of 10^k-1 or 10^k or 10^k+1: (04) k=12 A027897 A027898, k=13 A109933, k=14 A106305, k=15 A111117,
divisors, of 10^k-1 or 10^k or 10^k+1: (05) k=16 A111211, k=17 A113116, k=18 A113522
divisors, of 2^k-1: (01) k=6 A018267, k=8 A018358, k=10 A003523, k=12 A003524, k=14 A003525, k=15 A003526,
divisors, of 2^k-1: (02) k=16 A003527, k=18 A003528, k=20 A003529, k=21 A003530, k=22 A003531, k=24 A003532,
divisors, of 2^k-1: (03) k=25 A003533, k=26 A003534, k=27 A003535, k=28 A003536, k=29 A003537, k=30 A003538,
divisors, of 2^k-1: (04) k=32 A004729, k=33 A003540, k=34 A003541, k=35 A003542, k=36 A003543, k=38 A003544,
divisors, of 2^k-1: (05) k=39 A003545, k=40 A003546, k=42 A003547, k=43 A003548, k=44 A003549, k=45 A003550,
divisors, of highly composite numbers (A002182): ..., A178858 (5040), A178859, A178860, A178861, A178862, A178863, A178864 (27720),...
divisors, of numbers in range 200..299: A018332, A018333, A018334, A018335, A018336, A018337, A018338, A018339,
A018340, A018341, A018342, A018343, A018344, A018345, A018346, A018347, A018348, A018349, A018350, A018351, A018352, A018353, A018354, A018355, A018356, A018357, A018358, A018359, A018360, A018361, A018362, A018363, A018364, A018365, A018366, A018367, A018368, A018369, A018370, A018371, A018372, A018373, A018374, A018375, A018376, A018377, A018378, A018379, A018380, A018381
divisors, of numbers in range 300..399: A018382, A018383, A018384, A018385, A018386, A018387, A018388, A018389,
A018390, A018391, A018392, A018393, A018394, A018395, A018396, A018397, A018398, A018399, A018400, A018401, A018402, A018403, A018404, A018405, A018406, A018407, A018408, A018409, A018410, A018411, A018412, A018413, A018414, A018415, A018416, A018417, A018418, A018419, A018420, A018421, A018422, A018423, A018424, A018425, A018426, A018427, A018428, A018429, A018430, A018431, A018432
divisors, of numbers in range 400..499: A018433, A018434, A018435, A018436, A018437, A018438, A018439, A018440,
A018441, A018442, A018443, A018444, A018445, A018446, A018447, A018448, A018449, A018450, A018451, A018452, A018453, A018454, A018455, A018456, A018457, A018458, A018459, A018460, A018461, A018462, A018463, A018464, A018465, A018466, A018467, A018468, A018469, A018470, A018471, A018472, A018473, A018474, A018475, A018476, A018477, A018478, A018479, A018480, A018481, A018482, A018483, A018484, A018485, A018486, A018487, A018488
divisors, of numbers in range 500..599: A018489, A018490, A018491, A018492, A018493, A018494, A018495, A018496,
A018497, A018498, A018499, A018500, A018501, A018502, A018503, A018504, A018505, A018506, A018507, A018508, A018509, A018510, A018511, A018512, A018513, A018514, A018515, A018516, A018517, A018518, A018519, A018520, A018521, A018522, A018523, A018524, A018525, A018526, A018527, A018528, A018529, A018530, A018531, A018532, A018533, A018534, A018535, A018536, A018537, A018538, A018539, A018540
divisors, of numbers in range 600..699: A018541, A018542, A018543, A018544, A018545, A018546, A018547, A018548, A018549,
A018550, A018551, A018552, A018553, A018554, A018555, A018556, A018557, A018558, A018559, A018560, A018561, A018562, A018563, A018564, A018565, A018566, A018567, A018568, A018569, A018570, A018571, A018572, A018573, A018574, A018575, A018576, A018577, A018578, A018579, A018580, A018581, A018582, A018583, A018584, A018585, A018586, A018587, A018588, A018589, A018590, A018591, A018592, A018593, A018594, A018595, A018596, A018597
divisors, of numbers in range 700..799: A018598, A018599, A018600, A018601, A018602, A018603, A018604, A018605,
A018606, A018607, A018608, A018609, A018610, A018611, A018612, A018613, A018614, A018615, A018616, A018617, A018618, A018619, A018620, A018621, A018622, A018623, A018624, A018625, A018626, A018627, A018628, A018629, A018630, A018631, A018632, A018633, A018634, A018635, A018636, A018637, A018638, A018639, A018640, A018641, A018642, A018643, A018644, A018645, A018646, A018647, A018648, A018649, A018650, A018651, A018652
divisors, of numbers in range 800..899: A018653, A018654, A018655, A018656, A018657, A018658, A018659, A018660, A018661,
A018662, A018663, A018664, A018665, A018666, A018667, A018668, A018669, A018670, A018671, A018672, A018673, A018674, A018675, A018676, A018677, A018678, A018679, A018680, A018681, A018682, A018683, A018684, A018685, A018686, A018687, A018688, A018689, A018690, A018691, A018692, A018693, A018694, A018695, A018696, A018697, A018698, A018699, A018700, A018701, A018702, A018703, A018704, A018705, A018706, A018707, A018708, A018709
divisors, of numbers in range 900..999: A018710, A018711, A018712, A018713, A018714, A018715, A018716, A018717, A018718,
A018719, A018720, A018721, A018722, A018723, A018724, A018725, A018726, A018727, A018728, A018729, A018730, A018731, A018732, A018733, A018734, A018735, A018736, A018737, A018738, A018739, A018740, A018741, A018742, A018743, A018744, A018745, A018746, A018747, A018748, A018749, A018750, A018751, A018752, A018753, A018754, A018755, A018756, A018757, A018758, A018759, A018760, A018761, A018762, A018763, A018764, A018765, A018766
divisors, of numbers not less than 10^16: 10^17-1: A113116, 10^18-1: A113522, 2^60-1: A081110, 24! A174228,
order of Monster group A174670, decreasing A174671, of 2^1092-1: A177855
divisors, of perfect numbers (as binary): A135652, [A138823], A135653, [A138824], A135654, [A138825], A135655
divisors, of perfect numbers: 28: A018254, [496/2: A018355], 496: A018487, [8128/2: A138814], 8128: A133024, [33550336/2: A138815], 33550336: A133025
divisors, of primorials: 5#: A018255, 7#: A018336, 11#: A087005, 13#: A087006, 17#: A087007, 19#: A087008
divisors, of squares: (01) 6^2 A018256, 10^2 A018283, 12^2 A018302, 14^2 A018330, 15^2 A018342, 18^2 A018393,
divisors, of squares: (02) 20^2 A018433, 21^2 A018458, 22^2 A018480, 24^2 A018528, 26^2 A018587, 28^2 A018645,
divisors, of squares: (03) 30^2 A018710, 60^2 A035303, 100^2 A133020, 216^2 A114334, 1000^2 A159765
divisors, of x^n-1: A107748, A114536, A117215, A117342, A117343
divisors, proper (or nontrivial): A070824 (divisors of n in the range 1 < d < n), A137510
divisors, proper: often used incorrectly to refer to aliquot divisors (see divisors, aliquot)
divisors, smallest prime power: A028233, A053597
divisors, smallest: A020639*
divisors, sum of odd: A000593*
divisors, sum of: A000203*, A001065* (proper), A048050* (proper)
divisors, summing over, in Maple: A000031*
divisors, unitary: see unitary divisors

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]