The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087612 A divisibility sequence derived from Lehmer's polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1. Square root of the terms in A059928. 2
 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 13, 29, 3, 1, 1, 37, 3, 1, 23, 1, 9, 49, 25, 1, 39, 1, 29, 32, 93, 67, 1, 71, 27, 1, 37, 79, 3, 83, 13, 173, 69, 29, 47, 1, 423, 293, 49, 103, 75, 317, 53, 109, 39, 37, 59, 1297, 261, 367, 1024, 1, 93, 1, 1541, 269, 201, 277, 923, 283, 1917 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The sequence is conjectured to contain an infinite number of primes. The first 100 terms contain 33 unique primes. As stated by Everest and Ward, except for a finite number of composite n, a(n) can be prime only if n is prime. For this sequence, n=23*47 is the largest composite for which a(n) is prime. REFERENCES See A059928 LINKS G. Everest and T. Ward, Primes in Divisibility Sequences MATHEMATICA CompanionMatrix[p_, x_] := Module[{cl=CoefficientList[p, x], deg, m}, cl=Drop[cl/Last[cl], -1]; deg=Length[cl]; If[deg==1, {-cl}, m=RotateLeft[IdentityMatrix[deg]]; m[[ -1]]=-cl; Transpose[m]]]; c=CompanionMatrix[x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, x]; im=IdentityMatrix; tmp=im; Table[tmp=tmp.c; Sqrt[Abs[Det[tmp-im]]], {n, 100}] CROSSREFS Cf. A059928. Sequence in context: A306346 A060901 A351545 * A260626 A155828 A226203 Adjacent sequences:  A087609 A087610 A087611 * A087613 A087614 A087615 KEYWORD nonn AUTHOR T. D. Noe, Sep 15 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 06:43 EDT 2022. Contains 357191 sequences. (Running on oeis4.)