

A087612


A divisibility sequence derived from Lehmer's polynomial x^10+x^9x^7x^6x^5x^4x^3+x+1. Square root of the terms in A059928.


2



1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 13, 29, 3, 1, 1, 37, 3, 1, 23, 1, 9, 49, 25, 1, 39, 1, 29, 32, 93, 67, 1, 71, 27, 1, 37, 79, 3, 83, 13, 173, 69, 29, 47, 1, 423, 293, 49, 103, 75, 317, 53, 109, 39, 37, 59, 1297, 261, 367, 1024, 1, 93, 1, 1541, 269, 201, 277, 923, 283, 1917
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

The sequence is conjectured to contain an infinite number of primes. The first 100 terms contain 33 unique primes. As stated by Everest and Ward, except for a finite number of composite n, a(n) can be prime only if n is prime. For this sequence, n=23*47 is the largest composite for which a(n) is prime.


REFERENCES

See A059928


LINKS

Table of n, a(n) for n=1..72.
G. Everest and T. Ward, Primes in Divisibility Sequences
Index to divisibility sequences


MATHEMATICA

CompanionMatrix[p_, x_] := Module[{cl=CoefficientList[p, x], deg, m}, cl=Drop[cl/Last[cl], 1]; deg=Length[cl]; If[deg==1, {cl}, m=RotateLeft[IdentityMatrix[deg]]; m[[ 1]]=cl; Transpose[m]]]; c=CompanionMatrix[x^10+x^9x^7x^6x^5x^4x^3+x+1, x]; im=IdentityMatrix[10]; tmp=im; Table[tmp=tmp.c; Sqrt[Abs[Det[tmpim]]], {n, 100}]


CROSSREFS

Cf. A059928.
Sequence in context: A069292 A091842 A060901 * A260626 A155828 A226203
Adjacent sequences: A087609 A087610 A087611 * A087613 A087614 A087615


KEYWORD

nonn


AUTHOR

T. D. Noe, Sep 15 2003


STATUS

approved



