login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003453 Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation and reflection.
(Formerly M2542)
5
1, 3, 6, 11, 17, 26, 36, 50, 65, 85, 106, 133, 161, 196, 232, 276, 321, 375, 430, 495, 561, 638, 716, 806, 897, 1001, 1106, 1225, 1345, 1480, 1616, 1768, 1921, 2091, 2262, 2451, 2641, 2850, 3060, 3290, 3521, 3773, 4026 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

COMMENTS

In other words, the number of 2-dissections of an n-gon modulo the dihedral action.

John W. Layman observes that this appears to be the alternating sum transform (PSumSIGN) of A005744.

Row 2 of the convolution array A213847. - Clark Kimberling, Jul 05 2012

Number of nonisomorphic outer planar graphs of order n >= 3 and size n+2. - Christian Barrientos and Sarah Minion, Feb 27 2018

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=5..1000

Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012. See Theorem 5(2).

P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.

Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, Journal of Combinatorial Theory, Series A, Volume 114, Issue 4, May 2007, Pages 619-630.

C. R. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.

N. J. A. Sloane, Transforms

Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).

FORMULA

G.f.: (1+x-x^2) / ((1-x)^4*(1+x)^2).

See also the Maple code.

a(5)=1, a(6)=3, a(7)=6, a(8)=11, a(9)=17, a(10)=26, a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a (n-6). - Harvey P. Dale, Jan 28 2013

a(n) = (2*n^3-6*n^2-23*n+63+3*(n-5)*(-1)^n)/48, for n>=5. - Luce ETIENNE, Apr 07 2015

a(n) = (1/2) * Sum_{i=1..n-4} floor((i+1)*(n-i-2)/2). - Wesley Ivan Hurt, May 07 2016

MAPLE

T52:= proc(n)

if n mod 2 = 0 then (n-4)*(n-2)*(n+3)/24;

else (n-3)*(n^2-13)/24; fi end;

[seq(T52(n), n=5..80)]; # N. J. A. Sloane, Dec 28 2012

MATHEMATICA

nd[n_]:=If[EvenQ[n], (n-4)(n-2) (n+3)/24, (n-3) (n^2-13)/24]; Array[nd, 50, 5] (* or *) LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 3, 6, 11, 17, 26}, 50] (* Harvey P. Dale, Jan 28 2013 *)

PROG

(PARI) \\ See A295419 for DissectionsModDihedral()

{ my(v=DissectionsModDihedral(apply(i->y + O(y^4), [1..40]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017

CROSSREFS

Column 3 of A295634.

Cf. A005744, A213847, A295419.

Sequence in context: A247586 A107957 A000603 * A011901 A169739 A109471

Adjacent sequences:  A003450 A003451 A003452 * A003454 A003455 A003456

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Simon Plouffe

EXTENSIONS

Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012

Name clarified by Andrew Howroyd, Nov 24 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 04:46 EDT 2019. Contains 321422 sequences. (Running on oeis4.)