login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200135 Decimal expansion of the negated value of the digamma function at 1/5. 1
5, 2, 8, 9, 0, 3, 9, 8, 9, 6, 5, 9, 2, 1, 8, 8, 2, 9, 5, 5, 4, 7, 2, 0, 7, 9, 6, 2, 4, 4, 9, 9, 5, 2, 1, 0, 4, 8, 2, 5, 5, 8, 8, 2, 7, 4, 2, 0, 6, 6, 4, 2, 8, 1, 0, 1, 7, 5, 8, 5, 8, 6, 6, 4, 1, 9, 1, 6, 2, 4, 7, 5, 4, 0, 9, 1, 6, 1, 9, 6, 5, 2, 5, 4, 6, 5, 7, 7, 8, 2, 4, 3, 1, 9, 5, 7, 0, 3, 6, 2, 4, 1, 2, 4, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..105.

Wikipedia, Digamma function

FORMULA

Psi(1/5) = -gamma -Pi*sqrt(1+2/sqrt 5)/2 -5*log(5)/4 -sqrt(5)*log((3+sqrt 5)/2)/4. where gamma = A001620, sqrt(1+2/sqrt 5) = A019952, (3+sqrt 5)/2 = A104457.

EXAMPLE

Psi(1/5) =  -5.289039896592188295547207962...

MAPLE

-gamma-Pi*sqrt(1+2/sqrt(5))/2-5*log(5)/4-sqrt(5)/4*log((3+sqrt(5)/2) ); evalf(%) ;

MATHEMATICA

RealDigits[-PolyGamma[1/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

PROG

(PARI) -psi(1/5) \\ Charles R Greathouse IV, Jul 19 2013

CROSSREFS

Cf. A020759, A047787, A020777, A200064, A200134-A200138.

Sequence in context: A168202 A153455 A193019 * A001062 A187876 A179951

Adjacent sequences:  A200132 A200133 A200134 * A200136 A200137 A200138

KEYWORD

cons,nonn

AUTHOR

R. J. Mathar, Nov 13 2011

EXTENSIONS

More terms from Jean-François Alcover, Feb 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 12:26 EST 2014. Contains 252154 sequences.