OFFSET
1,2
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..200
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
F. Faase, Results from the counting program
P. Raff, Spanning Trees in Grid Graphs. arXiv:0809.2551 [math.CO], 2008.
P. Raff, Analysis of the Number of Spanning Trees of S_4 x P_n. Contains sequence, recurrence, generating function, and more.
Index entries for linear recurrences with constant coefficients, signature (48, -336, 582, -336, 48, -1).
FORMULA
a(1) = 1,
a(2) = 54,
a(3) = 2240,
a(4) = 89964,
a(5) = 3596725,
a(6) = 143700480 and
a(n) = 48a(n-1) - 336a(n-2) + 582a(n-3) - 336a(n-4) + 48a(n-5) - a(n-6).
G.f.: x*(x^4+6*x^3-16*x^2+6*x+1)/ ((x^2-6*x+1)*(x^4-42*x^3+83*x^2-42*x+1)). - Paul Raff, Mar 06 2009
MAPLE
a:= n-> (Matrix([[1, 0, -1, -54, -2240, -89964]]). Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [48, -336, 582, -336, 48, -1][i] else 0 fi)^(n-1))[1, 1]: seq(a(n), n=1..14); # Alois P. Heinz, Aug 01 2008
MATHEMATICA
LinearRecurrence[{48, -336, 582, -336, 48, -1}, {1, 54, 2240, 89964, 3596725, 143700480}, 17] (* Jean-François Alcover, Aug 06 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
STATUS
approved