login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003752
Number of Hamiltonian paths in C_4 X P_n.
6
4, 72, 584, 4016, 24656, 140624, 761960, 3976704, 20173280, 100097008, 488003448, 2345542720, 11142878992, 52426883056, 244682331976, 1134222633280, 5227498311360, 23975219772016, 109500177006104, 498322800625728, 2260840364623472, 10230065398683632
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
FORMULA
a(1) = 4,
a(2) = 72,
a(3) = 584,
a(4) = 4016,
a(5) = 24656,
a(6) = 140624,
a(7) = 761960,
a(8) = 3976704 and
a(n) = 11a(n-1) - 36a(n-2) + 16a(n-3) + 67a(n-4) - 9a(n-5) - 10a(n-6) + 2a(n-7).
G.f.: -4*x*(2*x^7 +4*x^6 -37*x^5 +21*x^4 +30*x^3 -16*x^2 +7*x +1)/((x +1)*(x^2 -4*x +1)^2*(2*x^2 +4*x -1)). - Colin Barker, Aug 30 2012
MATHEMATICA
CoefficientList[Series[-4 (2 x^7 + 4 x^6 - 37 x^5 + 21 x^4 + 30 x^3 - 16 x^2 + 7 x + 1)/((x + 1) (x^2 - 4 x + 1)^2 (2 x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)
LinearRecurrence[{11, -36, 16, 67, -9, -10, 2}, {4, 72, 584, 4016, 24656, 140624, 761960, 3976704}, 30] (* Harvey P. Dale, May 04 2018 *)
PROG
(Magma) I:=[4, 72, 584, 4016, 24656, 140624, 761960, 3976704]; [n le 8 select I[n] else 11*Self(n-1)-36*Self(n-2)+16*Self(n-3)+67*Self(n-4)-9*Self(n-5)-10*Self(n-6)+2*Self(n-7): n in [1..30]]; // Vincenzo Librandi, Oct 14 2013
CROSSREFS
Sequence in context: A071683 A192826 A190398 * A062018 A192830 A119580
KEYWORD
nonn,easy
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
STATUS
approved