The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028468 Number of perfect matchings in graph P_{6} X P_{n}. 7
1, 1, 13, 41, 281, 1183, 6728, 31529, 167089, 817991, 4213133, 21001799, 106912793, 536948224, 2720246633, 13704300553, 69289288909, 349519610713, 1765722581057, 8911652846951, 45005025662792, 227191499132401, 1147185247901449, 5791672851807479 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
R. P. Stanley, Enumerative Combinatorics I, p. 292.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
David Klarner, Jordan Pollack, Domino tilings of rectangles with fixed width, Disc. Math. 32 (1980) 45-52.
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
R. J. Mathar, Paving rectangular regions with rectangular tiles: tatami and non-tatami tilings, arXiv:1311.6135 [math.CO], 2013, Table 5.
Thotsaporn ”Aek” Thanatipanonda, Statistics of Domino Tilings on a Rectangular Board, Fibonacci Quart. 57 (2019), no. 5, 145-153. See p. 151.
FORMULA
From N. J. A. Sloane, Feb 03 2009: (Start)
a(1) = 1,
a(2) = 13,
a(3) = 41,
a(4) = 281,
a(5) = 1183,
a(6) = 6728,
a(7) = 31529,
a(8) = 167089,
a(9) = 817991,
a(10) = 4213133,
a(11) = 21001799,
a(12) = 106912793,
a(13) = 536948224,
a(14) = 2720246633, and
a(n) = 40*a(n-2) - 416*a(n-4) + 1224*a(n-6) - 1224*a(n-8) + 416*a(n-10) - 40*a(n-12) + a(n-14). (From Faase's web page.) (End)
G.f.: (x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1) / ( (1-x) *(1+x) *(x^3-5*x^2+6*x-1) *(x^3+6*x^2+5*x+1) ).
a(n) = a(n-1)+20*a(n-2)+10*a(n-3)-38*a(n-4)-10*a(n-5)+20*a(n-6)-a(n-7)-a(n-8). - Sergey Perepechko, Sep 23 2018
MAPLE
seq(coeff(series((1+2*x-x^2)*(x^4+2*x^3-3*x^2-2*x+1)/((x-1)*(x+1)*(x^3-5*x^2+6*x-1)*(x^3+6*x^2+5*x+1)), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Nov 23 2018
MATHEMATICA
a[n_] := Product[2(2 + Cos[(2 k Pi)/7] + Cos[(2 j Pi)/(n+1)]), {k, 1, 3}, {j, 1, n/2}] // Round;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 19 2018, after A099390 *)
LinearRecurrence[{1, 20, 10, -38, -10, 20, -1, -1}, {1, 1, 13, 41, 281, 1183, 6728, 31529}, 30] (* Vincenzo Librandi, Nov 24 2018 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(-(x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((x-1)*(1+x)*(x^3-5*x^2+6*x-1)*(x^3+6*x^2+5*x+1))) \\ Altug Alkan, Mar 23 2016
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((1-x^2)*(x^3-5*x^2+6*x-1)*(x^3+ 6*x^2+5*x+1)) )); // G. C. Greubel, Nov 25 2018
(Sage) s=((x^2-2*x-1)*(x^4+2*x^3-3*x^2-2*x+1)/((1-x^2)*(x^3-5*x^2+6*x-1) *(x^3+6*x^2+5*x+1))).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 25 2018
CROSSREFS
Row 6 of arrays A099390, A189006.
Column k=2 of A251072.
Cf. A005178.
Sequence in context: A231885 A167240 A147247 * A146995 A102130 A080186
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 16:16 EDT 2024. Contains 372522 sequences. (Running on oeis4.)