login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028470
Number of perfect matchings in graph P_{8} X P_{n}.
7
1, 1, 34, 153, 2245, 14824, 167089, 1292697, 12988816, 108435745, 1031151241, 8940739824, 82741005829, 731164253833, 6675498237130, 59554200469113, 540061286536921, 4841110033666048, 43752732573098281, 393139145126822985, 3547073578562247994, 31910388243436817641
OFFSET
0,3
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
David Klarner, Jordan Pollack, Domino tilings of rectangles with fixed width, Disc. Math. 32 (1980) 45-52
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
R. J. Mathar, Paving rectangular regions with rectangular tiles,...., arXiv:1311.6135 [math.CO], Table 7.
James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2
Index entries for linear recurrences with constant coefficients, signature (1, 76, 69, -921, -584, 4019, 829, -7012, 829, 4019, -584, -921, 69, 76, 1, -1).
FORMULA
Recurrence from Faase web site:
a(1) = 1,
a(2) = 34,
a(3) = 153,
a(4) = 2245,
a(5) = 14824,
a(6) = 167089,
a(7) = 1292697,
a(8) = 12988816,
a(9) = 108435745,
a(10) = 1031151241,
a(11) = 8940739824,
a(12) = 82741005829,
a(13) = 731164253833,
a(14) = 6675498237130,
a(15) = 59554200469113,
a(16) = 540061286536921,
a(17) = 4841110033666048,
a(18) = 43752732573098281,
a(19) = 393139145126822985,
a(20) = 3547073578562247994,
a(21) = 31910388243436817641,
a(22) = 287665106926232833093,
a(23) = 2589464895903294456096,
a(24) = 23333526083922816720025,
a(25) = 210103825878043857266833,
a(26) = 1892830605678515060701072,
a(27) = 17046328120997609883612969,
a(28) = 153554399246902845860302369,
a(29) = 1382974514097522648618420280,
a(30) = 12457255314954679645007780869,
a(31) = 112199448394764215277422176953,
a(32) = 1010618564986361239515088848178, and
a(n) = 153a(n-2) - 7480a(n-4) + 151623a(n-6) - 1552087a(n-8) + 8933976a(n-10) - 30536233a(n-12) + 63544113a(n-14) - 81114784a(n-16) + 63544113a(n-18) - 30536233a(n-20) + 8933976a(n-22) - 1552087a(n-24) + 151623a(n-26) - 7480a(n-28) + 153a(n-30) - a(n-32).
G.f.: (1 -43*x^2 -26*x^3 +360*x^4 +110*x^5 -1033*x^6 +1033*x^8 -110*x^9 -360*x^10 +26*x^11 +43*x^12 -x^14) /(1 -x -76*x^2 -69*x^3 +921*x^4 +584*x^5 -4019*x^6 -829*x^7 +7012*x^8 -829*x^9 -4019*x^10 +584*x^11 +921*x^12 -69*x^13 -76*x^14 -x^15 +x^16). - Sergey Perepechko, Nov 22 2012
MAPLE
a:= n-> (Matrix(16, (i, j)-> `if` (i=j-1, 1, `if` (i=16, [-1, 1, 76, 69, -921, -584, 4019, 829, -7012][min(j, 18-j)], 0)))^n. <<seq([1292697, 167089, 14824, 2245, 153, 34, 1, 1, 0][min(k, 18-k)], k=1..16)>>)[10, 1]: seq(a(n), n=0..50); # Alois P. Heinz, Apr 14 2011
MATHEMATICA
a[n_] := Product[2(2+Cos[(2j Pi)/9] + Cos[(2k Pi)/(n+1)]), {k, 1, n/2}, {j, 1, 4}] // Round; Join[{1}, Array[a, 21]] (* Jean-François Alcover, Aug 11 2018; a(0)=1 prepended by Georg Fischer, Apr 17 2020 *)
PROG
(PARI) {a(n) = sqrtint(polresultant(polchebyshev(8, 2, x/2), polchebyshev(n, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
CROSSREFS
Row 8 of array A099390.
Sequence in context: A159744 A192398 A167241 * A221806 A321533 A345157
KEYWORD
nonn
AUTHOR
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
a(0)=1 prepended by Seiichi Manyama, Apr 13 2020
STATUS
approved