OFFSET
0,3
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1048
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
F. Faase, Results from the counting program
David Klarner, Jordan Pollack, Domino tilings of rectangles with fixed width, Disc. Math. 32 (1980) 45-52
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
R. J. Mathar, Paving rectangular regions with rectangular tiles,...., arXiv:1311.6135 [math.CO], Table 7.
James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2
Index entries for linear recurrences with constant coefficients, signature (1, 76, 69, -921, -584, 4019, 829, -7012, 829, 4019, -584, -921, 69, 76, 1, -1).
FORMULA
Recurrence from Faase web site:
a(1) = 1,
a(2) = 34,
a(3) = 153,
a(4) = 2245,
a(5) = 14824,
a(6) = 167089,
a(7) = 1292697,
a(8) = 12988816,
a(9) = 108435745,
a(10) = 1031151241,
a(11) = 8940739824,
a(12) = 82741005829,
a(13) = 731164253833,
a(14) = 6675498237130,
a(15) = 59554200469113,
a(16) = 540061286536921,
a(17) = 4841110033666048,
a(18) = 43752732573098281,
a(19) = 393139145126822985,
a(20) = 3547073578562247994,
a(21) = 31910388243436817641,
a(22) = 287665106926232833093,
a(23) = 2589464895903294456096,
a(24) = 23333526083922816720025,
a(25) = 210103825878043857266833,
a(26) = 1892830605678515060701072,
a(27) = 17046328120997609883612969,
a(28) = 153554399246902845860302369,
a(29) = 1382974514097522648618420280,
a(30) = 12457255314954679645007780869,
a(31) = 112199448394764215277422176953,
a(32) = 1010618564986361239515088848178, and
a(n) = 153a(n-2) - 7480a(n-4) + 151623a(n-6) - 1552087a(n-8) + 8933976a(n-10) - 30536233a(n-12) + 63544113a(n-14) - 81114784a(n-16) + 63544113a(n-18) - 30536233a(n-20) + 8933976a(n-22) - 1552087a(n-24) + 151623a(n-26) - 7480a(n-28) + 153a(n-30) - a(n-32).
G.f.: (1 -43*x^2 -26*x^3 +360*x^4 +110*x^5 -1033*x^6 +1033*x^8 -110*x^9 -360*x^10 +26*x^11 +43*x^12 -x^14) /(1 -x -76*x^2 -69*x^3 +921*x^4 +584*x^5 -4019*x^6 -829*x^7 +7012*x^8 -829*x^9 -4019*x^10 +584*x^11 +921*x^12 -69*x^13 -76*x^14 -x^15 +x^16). - Sergey Perepechko, Nov 22 2012
MAPLE
a:= n-> (Matrix(16, (i, j)-> `if` (i=j-1, 1, `if` (i=16, [-1, 1, 76, 69, -921, -584, 4019, 829, -7012][min(j, 18-j)], 0)))^n. <<seq([1292697, 167089, 14824, 2245, 153, 34, 1, 1, 0][min(k, 18-k)], k=1..16)>>)[10, 1]: seq(a(n), n=0..50); # Alois P. Heinz, Apr 14 2011
MATHEMATICA
a[n_] := Product[2(2+Cos[(2j Pi)/9] + Cos[(2k Pi)/(n+1)]), {k, 1, n/2}, {j, 1, 4}] // Round; Join[{1}, Array[a, 21]] (* Jean-François Alcover, Aug 11 2018; a(0)=1 prepended by Georg Fischer, Apr 17 2020 *)
PROG
(PARI) {a(n) = sqrtint(polresultant(polchebyshev(8, 2, x/2), polchebyshev(n, 2, I*x/2)))} \\ Seiichi Manyama, Apr 13 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
a(0)=1 prepended by Seiichi Manyama, Apr 13 2020
STATUS
approved