login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000082 a(n) = n^2*Product_{p|n} (1 + 1/p). 8
1, 6, 12, 24, 30, 72, 56, 96, 108, 180, 132, 288, 182, 336, 360, 384, 306, 648, 380, 720, 672, 792, 552, 1152, 750, 1092, 972, 1344, 870, 2160, 992, 1536, 1584, 1836, 1680, 2592, 1406, 2280, 2184, 2880, 1722, 4032, 1892, 3168, 3240, 3312, 2256 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n > 1: A006530(a(n)) = A076566(n-1). - Reinhard Zumkeller, Oct 03 2012

A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 01 2017

REFERENCES

B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Index to divisibility sequences

FORMULA

Dirichlet g.f.: zeta(s-1)*zeta(s-2)/zeta(2*s-2).

Dirichlet convolution: Sum_{d|n} mu(n/d)*sigma(d^2). - Vladeta Jovovic, Nov 16 2001

Multiplicative with a(p^e) = p^(2*e-1)*(p+1). - David W. Wilson, Aug 01 2001

a(n) = A181797(n)*A003557(n). - R. J. Mathar, Mar 30 2011

a(n) = A001615(n^2). - Enrique Pérez Herrero, Mar 06 2012

MAPLE

proc(n) local b, d: b := n^2: for d from 1 to n do if irem(n, d) = 0 and isprime(d) then b := b*(1+d^(-1)): fi: od: RETURN(b): end:

MATHEMATICA

Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1+1/#2), #1 ]&, n^2, Range[ n ] ], {n, 1, 45} ]

Table[ n^2 Times@@(1+1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]), {n, 1, 45} ] (*Olivier Gérard, Aug 15 1997 *)

PROG

(PARI) a(n)=if(n<1, 0, direuler(p=2, n, (1+p*X)/(1-p^2*X))[n])

(Haskell)

a000082 n = product $ zipWith (\p e -> p ^ (2*e - 1) * (p + 1))

                              (a027748_row n) (a124010_row n)

-- Reinhard Zumkeller, Oct 03 2012

CROSSREFS

a(n) = n*A001615(n). Cf. A033196.

Cf. A027748, A124010.

Sequence in context: A119500 A260633 A110967 * A263849 A227416 A106697

Adjacent sequences:  A000079 A000080 A000081 * A000083 A000084 A000085

KEYWORD

nonn,easy,nice,mult

AUTHOR

N. J. A. Sloane

EXTENSIONS

Additional comments from Michael Somos, May 19 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 30 16:27 EDT 2017. Contains 284302 sequences.