login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005927 Theta series of diamond with respect to deep hole.
(Formerly M3262)
6
0, 0, 0, 4, 6, 0, 0, 0, 0, 0, 0, 12, 8, 0, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 24, 30, 0, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 24, 24, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 12, 48, 0, 0, 0, 0, 0, 0, 28, 24, 0, 0, 0, 0, 0, 0, 36, 48, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

REFERENCES

N. J. A. Sloane, Theta series and magic numbers for diamond and certain ionic crystal structures, J. Math. Phys. 28 (1987), 1653-1657.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of 4 * q^3 * psi^3(q^8) + (phi^3(q^4) - phi^3(-q^4)) / 2 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Aug 17 2009

a(8*n + 0) = a(8*n + 1) = a(8*n + 2) = a(8*n + 5) = a(8*n + 6) = a(8*n + 7) = 0. - Michael Somos, Aug 17 2009

4 * A008443(n) = a(8*n + 3). A005887(n) = a(8*n + 4). - Michael Somos, Aug 17 2009

EXAMPLE

4*q^3 + 6*q^4 + 12*q^11 + 8*q^12 + 12*q^19 + 24*q^20 + 16*q^27 + ... - Michael Somos, Aug 17 2009

MATHEMATICA

a[n_]:= SeriesCoefficient[4*q^3*QPochhammer[-q^8, q^8]^3* QPochhammer[q^16, q^16]^3 + (EllipticTheta[3, 0, q^4]^3 - EllipticTheta[3, 0, -q^4]^3)/2, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 01 2018 *)

PROG

(PARI) {a(n) = if( n<0, 0, if( n%8 == 3, n \= 8; polcoeff( 4 * sum(k=0, (sqrtint(8*n+1)-1)\2, x^((k^2+k)/2), x*O(x^n))^3, n), if( n%8 == 4, n /= 4; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x*O(x^n))^3, n), 0 )))} /* Michael Somos, Aug 17 2009 */

CROSSREFS

Sequence in context: A299639 A244444 A231407 * A201529 A079207 A259825

Adjacent sequences:  A005924 A005925 A005926 * A005928 A005929 A005930

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 23:05 EST 2019. Contains 319282 sequences. (Running on oeis4.)