This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Rea

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Rea


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


reachable configurations on circles: A005787
read n backwards: A004086
rebasing notation b[n]q: see A000695
Recaman's sequence : sequences related to :

Recaman's sequence : A005132*
Recaman's sequence, addition steps: A057165
Recaman's sequence, condensed version: A119632
Recaman's sequence, heights: A064288 A064289* A064290 A064291 A064292 A064293 A064294
Recaman's sequence, quotients and remainders: A065051 A065052
Recaman's sequence, records for a(n)/n: A064621, A064622
Recaman's sequence, segments in: A064492 A065038 A065053
Recaman's sequence, simplified version: A008344 A046901
Recaman's sequence, steps to hit n: A057167; A064227* and A064228* (records)
Recaman's sequence, subtraction steps: A057166
Recaman's sequence, transforms based on: A064365 A022831, A053461
Recaman's sequence, two-dimensional versions: A066201 A066202
Recaman's sequence, variations on: A008336 A064387 A064388 A064389 A063733 A065422 A066199 A066200 A066203 A066204
Recaman's sequence: see also: A064284 A064301 A064369 A064568 A064569 A064970 A065053 A065054 A065055 A065056

reciprocal of n, decimal expansion of: see 1/n
reciprocals of primes: see 1/p
record high values in a sequence {a(i)} occur at indices i such that a(i) > a(j) for all j < i
rectangles, Latin, see Latin squares
recurrence a(2^i+j) ..., sequences related to : recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D): (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708
recurrence, linear, constant coefficients, sequences related to :

See Index to linear recurrence relations

recurrences over rings: A005984
recurrences, of the form a(n) = k*a(n - 1) +/- a(n - 2), sequences related to :

recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (1) A000032 A002203 A006497 A014448 A087130 A085447 A086902 A086594 A087798 A086927
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (2) A001946 A086928 A088316 A090300 A090301 A090305 A090306 A090307 A090308 A090309
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (3) A090310 A090313 A090314 A090316 A087281 A087287 A089772
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (1) A057079 (and A087204) A007395 A005248 A003500 A003501 A003499 A056854 A086903 A056918 A087799
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (2) A057076 A087800 A078363 A067902 A078365 A090727 A078367 A087215 A078369 A090728
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (3) A090729 A090730 A090731 A090732 A090733 A090247 A090248 A090249 A090251 A087265 A065705 A089775

reduced residue system: A070194
reduced totient function psi: A002322*, A002174*, A002396*, A002616
Reed Kelly sequence: A214551
refactorable numbers: A033950*
refactorable, strongly: A141586
reflection coefficients: A007179
regions , sequences related to :

regions formed by lines in plane: A000124, A055503
regions formed by spheres in space: A046127, A014206, A059173, A059174, A059250
regions in regular polygon: see Poonen-Rubinstein paper

regular connected grpahs, see graphs, regular connected
regular n-gon with all diagonals drawn: see Poonen-Rubinstein paper
regular polyhedra, see: polyhedra, regular
regular polytopes, see: polytopes, regular
regular primes: see primes, regular
regular sequences: A003513
Reisel numbers: see Riesel numbers


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools