This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000561 Number of discordant permutations. (Formerly M4245 N1773) 3
 6, 44, 145, 336, 644, 1096, 1719, 2540, 3586, 4884, 6461, 8344, 10560, 13136, 16099, 19476, 23294, 27580, 32361, 37664, 43516, 49944, 56975, 64636, 72954, 81956, 91669, 102120, 113336, 125344, 138171, 151844, 166390, 181836, 198209, 215536, 233844, 253160, 273511, 294924, 317426, 341044 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 REFERENCES J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 3..1000 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy] Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA G.f.: x^3*(6 + 20*x + 5*x^2 - 4*x^3) / (1 - x)^4. - Jeffrey Shallit [adapted by Vincenzo Librandi, Feb 10 2016] a(n) = n*(9*n^2 - 45*n + 58)/2. - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 E.g.f.: x*(-22 - 4*x + (22 - 18*x + 9*x^2)*exp(x))/2. - G. C. Greubel, Nov 23 2018 MAPLE f := n->9/2*n^3-45/2*n^2+29*n; seq(f(n), n=0..50); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 A000561:=-(-6-20*z-5*z**2+4*z**3)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA LinearRecurrence[{4, -6, 4, -1}, {6, 44, 145, 336}, 50] (* Jean-François Alcover, Feb 10 2016 *) PROG (MAGMA) [(9/2)*n^3-(45/2)*n^2+29*n: n in [3..45]]; // Vincenzo Librandi, Feb 10 2016 (PARI) for(n=3, 45, print1(n*(9*n^2 - 45*n + 58)/2, ", ")) \\ G. C. Greubel, Nov 23 2018 (Sage) [n*(9*n^2 - 45*n + 58)/2 for n in (3..45)] # G. C. Greubel, Nov 23 2018 CROSSREFS Sequence in context: A078810 A114074 A075337 * A292057 A258156 A182540 Adjacent sequences:  A000558 A000559 A000560 * A000562 A000563 A000564 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 17:32 EDT 2019. Contains 328373 sequences. (Running on oeis4.)