This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005444 From a Fibonacci-like differential equation. (Formerly M2766) 0
 1, 1, 3, 8, 50, 214, 2086, 11976, 162816, 1143576, 20472504, 165910128, 3785092032, 33908109936, 967508478192, 9252123203712, 327062428940160, 3236057604910080, 141403289873955840, 1404243298160352000, 76168955916831029760, 735206146073008508160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Sequence is signed: first negative term is a(35) = -230450728485788167742674544892530875760640. - Vladeta Jovovic, Sep 29 2003 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS P. R. J. Asveld & N. J. A. Sloane, Correspondence, 1987 P. R. J. Asveld, Fibonacci-like differential equations with a polynomial nonhomogeneous term, Fib. Quart. 27 (1989), 303-309. FORMULA a(n) = Sum(k!*fibonacci(k + 1)*stirling1(n, k), k = 0..n). E.g.f.: 1/(1-log(1+x)-log(1+x)^2). - Vladeta Jovovic, Sep 29 2003 a(n) ~ n! * (-1)^n * exp(n*(1+sqrt(5))/2) / (sqrt(5)*(exp((1+sqrt(5))/2)-1)^(n+1)). - Vaclav Kotesovec, Oct 01 2013 MATHEMATICA CoefficientList[Series[1/(1-Log[1+x]-(Log[1+x])^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *) PROG (PARI) a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 1)); \\ Michel Marcus, Oct 30 2015 CROSSREFS Sequence in context: A019015 A000862 A194364 * A222684 A208801 A019044 Adjacent sequences:  A005441 A005442 A005443 * A005445 A005446 A005447 KEYWORD sign,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.