login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005444 From a Fibonacci-like differential equation.
(Formerly M2766)
2
1, 1, 3, 8, 50, 214, 2086, 11976, 162816, 1143576, 20472504, 165910128, 3785092032, 33908109936, 967508478192, 9252123203712, 327062428940160, 3236057604910080, 141403289873955840, 1404243298160352000, 76168955916831029760, 735206146073008508160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sequence is signed: first negative term is a(35) = -230450728485788167742674544892530875760640. - Vladeta Jovovic, Sep 29 2003

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Georg Fischer, Table of n, a(n) for n = 0..100

P. R. J. Asveld & N. J. A. Sloane, Correspondence, 1987

P. R. J. Asveld, Fibonacci-like differential equations with a polynomial nonhomogeneous term, Fib. Quart. 27 (1989), 303-309.

FORMULA

a(n) = Sum(k!*fibonacci(k + 1)*stirling1(n, k), k = 0..n).

E.g.f.: 1/(1-log(1+x)-log(1+x)^2). - Vladeta Jovovic, Sep 29 2003

a(n) ~ n! * (-1)^n * exp(n*(1+sqrt(5))/2) / (sqrt(5)*(exp((1+sqrt(5))/2)-1)^(n+1)). - Vaclav Kotesovec, Oct 01 2013

MATHEMATICA

CoefficientList[Series[1/(1-Log[1+x]-(Log[1+x])^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)

PROG

(PARI) a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 1)); \\ Michel Marcus, Oct 30 2015

CROSSREFS

Sequence in context: A000862 A306042 A194364 * A222684 A208801 A019044

Adjacent sequences:  A005441 A005442 A005443 * A005445 A005446 A005447

KEYWORD

sign,easy

AUTHOR

Simon Plouffe, N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 05:25 EDT 2019. Contains 321406 sequences. (Running on oeis4.)