login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191832 Number of solutions to the Diophantine equation x1 x2 + x2 x3 + x3 x4 + x4 x5 + x5 x6 = n, with all xi >= 1. 1
0, 0, 0, 0, 1, 2, 7, 10, 22, 29, 51, 61, 99, 115, 163, 192, 262, 287, 385, 428, 528, 600, 730, 780, 963, 1054, 1202, 1337, 1545, 1646, 1908, 2059, 2269, 2516, 2770, 2933, 3298, 3568, 3792, 4142, 4493, 4786, 5183, 5562, 5831, 6423, 6745, 7140, 7639, 8231, 8479, 9216, 9603, 10260, 10663, 11488, 11752, 12838, 13100, 13887 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Related to "Louisville's Last Theorem".

LINKS

Robert Israel, Table of n, a(n) for n = 1..1000

George E. Andrews, Stacked lattice boxes, Ann. Comb. 3 (1999), 115-130. See L_5(n).

MAPLE

with(numtheory);

D00:=n->add(tau(j)*tau(n-j), j=1..n-1);

D01:=n->add(tau(j)*sigma(n-j), j=1..n-1);

D000:=proc(n) local t1, i, j;

t1:=0;

for i from 1 to n-1 do

for j from 1 to n-1 do

if (i+j < n) then t1 := t1+numtheory:-tau(i)*numtheory:-tau(j)*numtheory:-tau(n-i-j); fi;

od; od;

t1;

end;

L5:=n->D000(n)/6+D00(n)+D01(n)/2+(2*n-1/6)*tau(n)-11*sigma[2](n)/6;

[seq(L5(n), n=1..60)];

# Alternate:

g:= proc(n, k, j) option remember;

     if n < k-1 then 0

     elif k = 2 then

        if n mod j = 0 then 1 else 0 fi

     else

        add(procname(n-j*x, k-1, x), x=1 .. floor((n-k+2)/j))

     fi

end proc:

f:= n -> add(g(n, 6, j), j=1..n-4);

seq(f(n), n=1..100); # Robert Israel, Dec 02 2015

CROSSREFS

Cf. A000005, A000203, A002133, A055507, A191822, A191829, A191831.

Sequence in context: A270879 A022302 A023855 * A066964 A066967 A222450

Adjacent sequences:  A191829 A191830 A191831 * A191833 A191834 A191835

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 16:08 EST 2019. Contains 329241 sequences. (Running on oeis4.)