login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005327 Certain subgraphs of a directed graph (inverse binomial transform of A005321).
(Formerly M4289)
7
1, 0, 1, 6, 91, 2820, 177661, 22562946, 5753551231, 2940064679040, 3007686166657921, 6156733583148764286, 25211824022994189751171, 206510050572345408251841660, 3383254158526734823389921915781 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

q-Subfactorial for q=2. - Vladimir Reshetnikov, Sep 12 2016

REFERENCES

T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.

T. L. Greenough, T. Lockman, Representation and enumeration of interval orders and semiorders, Ph.D. Thesis, Dartmouth,1976.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..50

E. Andresen, K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math. 14 (1976), no. 2, 103-119.

T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976. [Annotated scanned copy]

N. J. A. Sloane, Transforms

Eric Weisstein's World of Mathematics, Subfactorial, q-Factorial, q-Analog.

FORMULA

For n>1, a(n) = (2^(n-1)-1)*a(n-1) + (-1)^(n-1). - Max Alekseyev, Feb 23 2012

a(n) = p(n-1)*sum((-1)^j/p(j), j=0..n-1), where p(0) = 1, p(k) = product(2^i-1, i=1..k) for k>0. - Emeric Deutsch, Jan 23 2005

a(n) ~ A048651^2 * 2^(n*(n-1)/2). - Vaclav Kotesovec, Oct 09 2019

MAPLE

p:=proc(n) if n=0 then 1 else product(2^i-1, i=1..n) fi end: a:=n->p(n-1)*sum((-1)^j/p(j), j=0..n-1): seq(a(n), n=1..17); # Emeric Deutsch, Jan 23 2005

MATHEMATICA

a[1] = 1; a[n_] := a[n] = (2^(n-1)-1)*a[n-1] + (-1)^(n-1); Array[a, 15] (* Jean-Fran├žois Alcover, Apr 05 2016, after Max Alekseyev *)

With[{q = 2}, Table[QFactorial[n, q] Sum[(-1)^k/QFactorial[k, q], {k, 0, n}], {n, 0, 20}]] (* Vladimir Reshetnikov, Sep 12 2016 *)

CROSSREFS

Cf. A002820, A005329, A005321.

Sequence in context: A246155 A219220 A006151 * A182263 A171910 A278683

Adjacent sequences:  A005324 A005325 A005326 * A005328 A005329 A005330

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Max Alekseyev, Apr 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 06:22 EDT 2020. Contains 336442 sequences. (Running on oeis4.)