This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005324 Column of Motzkin triangle A026300. (Formerly M3902) 3
 1, 5, 20, 70, 230, 726, 2235, 6765, 20240, 60060, 177177, 520455, 1524120, 4453320, 12991230, 37854954, 110218905, 320751445, 933149470, 2714401580, 7895719634, 22969224850, 66829893650, 194486929650, 566141346225, 1648500576021 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 COMMENTS a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(n) = 4. - Clark Kimberling a(n) = T(n,n-4), where T is the array in A026300. REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS R. De Castro, A. L. Ramírez and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013. R. Donaghey and L. W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, 23 (1977), 291-301. Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, arXiv:0912.0072 [math.NT], 2009; FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics. FORMULA G.f.: z^4*M^5, where M is g.f. of Motzkin numbers (A001006). a(n) = (-5*I*(-1)^n*(n^4-6*n^3-43*n^2-24*n+36)*3^(1/2)*hypergeom([1/2, n+2],[1],4/3)+15*I*(-1)^n*(n^4+6*n^3+17*n^2+24*n-12)*3^(1/2)*hypergeom([1/2, n+1],[1],4/3))/(6*(n+3)*(n+2)*(n+4)*(n+5)*(n+6)). - Mark van Hoeij, Oct 29 2011 a(n) (n + 9) (n - 1) = (n + 3) (3 n + 6) a(n - 2) + (n + 3) (2 n + 7) a(n - 1). - Simon Plouffe, Feb 09 2012 a(n) =  5*sum(j=ceiling((n-4)/2)..(n+1), binomial(j,2*j-n+4)*binomial(n+1,j))/(n+1). - Vladimir Kruchinin, Mar 17 2014 MATHEMATICA T[n_, k_] := Sum[m = 2j+n-k; Binomial[n, m] (Binomial[m, j] - Binomial[m, j-1]), {j, 0, k/2}]; a[n_] := T[n, n-4]; Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Jul 27 2018 *) PROG (Maxima) a(n) := 5*sum(binomial(j, 2*j-n+4)*binomial(n+1, j), j, ceiling((n-4)/2), (n+1))/(n+1); /* Vladimir Kruchinin, Mar 18 2014 */ CROSSREFS Cf. A026300. A diagonal of triangle A020474. Sequence in context: A080930 A169792 A000343 * A304011 A243869 A154638 Adjacent sequences:  A005321 A005322 A005323 * A005325 A005326 A005327 KEYWORD nonn,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 21:35 EDT 2018. Contains 316541 sequences. (Running on oeis4.)