login
A002820
Number of n X n invertible binary matrices A such that A+I is invertible.
(Formerly M2170 N0866)
11
1, 0, 2, 48, 5824, 2887680, 5821595648, 47317927329792, 1544457148312846336, 202039706313624586813440, 105823549214125066767168438272, 221819704567105547916502447159246848, 1860304261534304703934696550224148083769344, 62413833036707798343389591015829588620560344023040
OFFSET
0,3
COMMENTS
Also number of linear orthomorphisms of GF(2)^n.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Zong Duo Dai, Solomon W. Golomb, and Guang Gong, Generating all linear orthomorphisms without repetition, Discrete Math. 205 (1999), 47-55.
P. F. Duvall, Jr. and P. W. Harley, III, A note on counting matrices, SIAM J. Appl. Math., 20 (1971), 374-377.
Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
Reference gives a recurrence.
a(n) = 2^(n(n-1)/2) * A005327(n+1).
MAPLE
# (Maple program based on Dai et al. from N. J. A. Sloane, Aug 10 2011)
N:=proc(n, i) option remember; if i = 1 then 1 else (2^n-2^(i-1))*N(n, i-1); fi; end;
Oh:=proc(n) option remember; local r; global N;
if n=0 then RETURN(1) elif n=1 then RETURN(0) else
add( 2^(r-2)*N(n, r)*2^(r*(n-r))*Oh(n-r), r=2..n); fi; end;
[seq(Oh(n), n=0..15)];
MATHEMATICA
ni[n_, i_] := ni[n, i] = If[i == 1, 1, (2^n - 2^(i-1))*ni[n, i-1]]; a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[ 2^(r-2)*ni[n, r]*2^(r*(n-r))*a[n-r], {r, 2, n}]; Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 19 2012, after Maple *)
CROSSREFS
Cf. A002884.
Column k=0 of A346201 and of A346381.
Sequence in context: A067626 A053071 A238838 * A196448 A053290 A056989
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Vladeta Jovovic, Mar 17 2000
Entry revised by N. J. A. Sloane, Aug 10 2011
a(0)=1 prepended by Alois P. Heinz, Jan 10 2025
STATUS
approved