login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048651 Decimal expansion of Product_{k >= 1} (1 - 1/2^k). 89
2, 8, 8, 7, 8, 8, 0, 9, 5, 0, 8, 6, 6, 0, 2, 4, 2, 1, 2, 7, 8, 8, 9, 9, 7, 2, 1, 9, 2, 9, 2, 3, 0, 7, 8, 0, 0, 8, 8, 9, 1, 1, 9, 0, 4, 8, 4, 0, 6, 8, 5, 7, 8, 4, 1, 1, 4, 7, 4, 1, 0, 6, 6, 1, 8, 4, 9, 0, 2, 2, 4, 0, 9, 0, 6, 8, 4, 7, 0, 1, 2, 5, 7, 0, 2, 4, 2, 8, 4, 3, 1, 9, 3, 3, 4, 8, 0, 7, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the limiting probability that a large random binary matrix is nonsingular (cf. A002884).

This constant is very close to 2^(13/24) * sqrt(Pi/log(2)) / exp(Pi^2/(6*log(2))) = 0.288788095086602421278899775042039398383022429351580356839... - Vaclav Kotesovec, Aug 21 2018

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000

Steven R. Finch, Digital Search Tree Constants. [Broken link]

Steven R. Finch, Digital Search Tree Constants. [From the Wayback machine]

Marvin Geiselhart, Ahmed Elkelesh, Moustafa Ebada, Sebastian Cammerer, and Stephan ten Brink, On the Automorphism Group of Polar Codes, arXiv:2101.09679 [cs.IT], 2021.

T. S. Jayram, Hellinger strikes back: a note on the multi-party information complexity of AND, LNCS 5687 (2009) 562-573.

Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.

Victor S. Miller, Counting Matrices that are Squares, arXiv:1606.09299 [math.GR], 2016.

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

László Tóth, Alternating sums concerning multiplicative arithmetic functions, arXiv preprint arXiv:1608.00795 [math.NT], 2016.

Eric Weisstein's World of Mathematics, Infinite Product.

Eric Weisstein's World of Mathematics, Tree Searching.

Wikipedia, Pentagonal number theorem.

FORMULA

exp(-Sum_{k>0} sigma_1(k)/k*2^(-k)) = exp(-Sum_{k>0} A000203(k)/k*2^(-k)). - Hieronymus Fischer, Jul 28 2007

Lim inf Product_{k=0..floor(log_2(n))} floor(n/2^k)*2^k/n for n->oo. - Hieronymus Fischer, Aug 13 2007

Lim inf A098844(n)/n^(1+floor(log_2(n)))*2^(1/2*(1+floor(log_2(n)))*floor(log_2(n))) for n->oo. - Hieronymus Fischer, Aug 13 2007

Lim inf A098844(n)/n^(1+floor(log_2(n)))*2^A000217(floor(log_2(n)) for n->oo. - Hieronymus Fischer, Aug 13 2007

Lim inf A098844(n)/(n+1)^((1+log_2(n+1))/2) for n->oo. - Hieronymus Fischer, Aug 13 2007

(1/2)*exp(-Sum_{n>0} 2^(-n)*Sum_{k|n} 1/(k*2^k)). - Hieronymus Fischer, Aug 13 2007

Limit of A177510(n)/A000079(n-1) as n->infinity (conjecture). - Mats Granvik, Mar 27 2011

Product_{k >= 1} (1-1/2^k) = (1/2; 1/2)_{infinity}, where (a;q)_{infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015

exp(Sum_{n>=1}(1/n/(1 - 2^n))) (according to Mathematica). - Mats Granvik, Sep 07 2016

(Sum_{k>0} (4^k-1)/(Product_{i=1..k} ((4^i-1)*(2*4^i-1))))*2 = 2/7 + 2/(3*7*31) + 2/(3*7*15*31*127)+2/(3*7*15*31*63*127*511) + ... (conjecture). - Werner Schulte, Dec 22 2016

Equals Sum_{k=-oo..oo} (-1)^k/2^((3*k+1)*k/2) (by Euler's pentagonal number theorem). - Amiram Eldar, Aug 13 2020

From Peter Bala, Dec 15 2020: (Start)

Constant C = Sum_{n >= 0} (-1)^n/( Product_{k = 1..n} (2^k - 1) ). The above conjectural result by Schulte follows by adding terms of this series in pairs.

C = (1/2)*Sum_{n >= 0} (-1/2)^n/( Product_{k = 1..n} (2^k - 1) ).

C = (3/8)*Sum_{n >= 0} (-1/4)^n/( Product_{k = 1..n} (2^k - 1) ).

1/C = Sum_{n >= 0} 2^(n*(n-1)/2)/( Product_{k = 1..n} (2^k - 1) ).

C = 1 - Sum_{n >= 0} (1/2)^(n+1)*Product_{k = 1..n} (1 - 1/2^k).

This latter identity generalizes as:

C = Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),

3*C = 1 - Sum_{n >= 0} (1/8)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),

3*7*C = 6 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),

3*7*15*C = 91 - Sum_{n >= 0} (1/32)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),

and so on, where the sequence [1, 0, 1, 6, 91, ...] is A005327.

(End)

From Amiram Eldar, Feb 19 2022: (Start)

Equals sqrt(2*Pi/log(2)) * exp(log(2)/24 - Pi^2/(6*log(2))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(2))) (McIntosh, 1995).

Equals Sum_{n>=0} (-1)^n/A005329(n).

Equals exp(-A335764). (End)

EXAMPLE

(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...

MATHEMATICA

RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)

RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)

PROG

(PARI) default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009

CROSSREFS

Cf. A002884, A001318, A005327, A005329, A048652, A079555, A098844, A067080, A100220, A132019, A132020, A132026, A132038, A070933, A261584, A335764.

Sequence in context: A020769 A105388 A178247 * A243596 A256849 A138300

Adjacent sequences: A048648 A048649 A048650 * A048652 A048653 A048654

KEYWORD

nonn,cons

AUTHOR

N. J. A. Sloane

EXTENSIONS

Corrected by Hieronymus Fischer, Jul 28 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 02:28 EST 2022. Contains 358431 sequences. (Running on oeis4.)