login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048652 Continued fraction for Product_{k >= 1} (1-1/2^k) (Cf. A048651). 5
0, 3, 2, 6, 4, 1, 2, 1, 9, 2, 1, 2, 3, 2, 3, 5, 1, 2, 1, 1, 6, 1, 2, 5, 79, 6, 4, 5, 1, 1, 1, 1, 12, 1, 1, 2, 5, 1, 659, 2, 17, 1, 5, 2, 3, 2, 6, 1, 1, 2, 3, 1, 2, 6, 1, 1, 3, 11, 1, 1, 2, 1, 1, 2, 4, 11, 2, 1, 3, 4, 2, 2, 1, 3, 1, 71, 1, 1, 1, 19, 1, 4, 1, 1, 8, 1, 49, 3, 1, 2, 2, 11, 1, 11, 10, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Continued fraction expansion of the constant Product{k>=1} (1-1/2^k)^(-1) = 3.46274661945506361... (A065446) gives essentially the same sequence.

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000

S. R. Finch, Digital Search Tree Constants

G. Xiao, Contfrac

Index entries for continued fractions for constants

EXAMPLE

0.2887880950866024212788997219294585937270...

0.288788095086602421278899721... = 0 + 1/(3 + 1/(2 + 1/(6 + 1/(4 + ...)))). - Harry J. Smith, May 02 2009

MATHEMATICA

ContinuedFraction[ N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ], 49]

PROG

(PARI) { allocatemem(932245000); default(realprecision, 21000); x=prodinf(k=1, -1/2^k, 1); z=contfrac(x); for (n=1, 20001, write("b048652.txt", n-1, " ", z[n])); } \\ Harry J. Smith, May 07 2009

CROSSREFS

Cf. A005329, A048651, A065446.

Sequence in context: A141619 A270143 A065021 * A195345 A057050 A182546

Adjacent sequences:  A048649 A048650 A048651 * A048653 A048654 A048655

KEYWORD

nonn,cofr

AUTHOR

N. J. A. Sloane

EXTENSIONS

Corrected by Harry J. Smith, May 02 2009

Deleted old PARI program. - Harry J. Smith, May 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 1 17:15 EDT 2016. Contains 272271 sequences.