This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098844 a(1)=1, a(n) = n*a(floor(n/2)). 47
 1, 2, 3, 8, 10, 18, 21, 64, 72, 100, 110, 216, 234, 294, 315, 1024, 1088, 1296, 1368, 2000, 2100, 2420, 2530, 5184, 5400, 6084, 6318, 8232, 8526, 9450, 9765, 32768, 33792, 36992, 38080, 46656, 47952, 51984, 53352, 80000, 82000, 88200, 90300 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Hieronymus Fischer, Table of n, a(n) for n = 1..1000 FORMULA a(2^n) = 2^(n*(n+1)/2) = A006125(n+1). From Hieronymus Fischer, Aug 13 2007: (Start) a(n) = product_{k=0..floor(log_2(n))} floor(n/2^k), n>=1. Recurrence: a(n*2^m) = n^m*2^(m(m+1)/2)*a(n). a(n) <= n^((1+log_2(n))/2) = 2^A000217(log_2(n)); equality iff n is a power of 2. a(n) >= c(n)*(n+1)^((1 + log_2(n+1))/2) for n != 2, where c(n) = product_{k=1..floor(log_2(n)} (1 - 1/2^k); equality holds iff n+1 is a power of 2. a(n) > c*(n+1)^((1 + log_2(n+1))/2) where c = 0.288788095086602421... (see constant A048651). lim inf a(n)/n^((1+log_2(n))/2)=0.288788095086602421... for n-->oo. lim sup a(n)/n^((1+log_2(n))/2) = 1 for n-->oo. lim inf a(n)/a(n+1) = 0.288788095086602421... for n-->oo (see constant A048651). a(n) = O(n^((1+log_2(n))/2)). (End) EXAMPLE a(10) = floor(10/2^0)*floor(10/2^1)*floor(10/2^2)*floor(10/2^3) = 10*5*2*1 = 100; a(17) = 1088 since 17 = 10001(base 2) and so a(17) = 10001*1000*100*10*1(base 2) = 17*8*4*2*1 = 1088. MATHEMATICA lst={}; Do[p=n; s=1; While[p>1, p=IntegerPart[p/2]; s*=p; ]; AppendTo[lst, s], {n, 1, 6!, 2}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 28 2009 *) PROG (PARI) a(n)=if(n<2, 1, n*a(floor(n/2))) CROSSREFS Cf. A048651, A067080, A132027, A132028, A132029, A132030, A132019, A132026, A132038. For formulas regarding a general parameter p (i.e., terms floor(n/p^k)) see A132264. For the product of terms floor(n/p^k) for p=3 to p=12 see A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12). For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328. Sequence in context: A265224 A093353 A083799 * A034437 A175715 A138880 Adjacent sequences:  A098841 A098842 A098843 * A098845 A098846 A098847 KEYWORD nonn AUTHOR Benoit Cloitre, Nov 03 2004 EXTENSIONS Formula section edited and multiple name references removed by Hieronymus Fischer, Jun 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.