login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048654 a(n) = 2a(n-1) + a(n-2); a(0)=1, a(1)=4. 29
1, 4, 9, 22, 53, 128, 309, 746, 1801, 4348, 10497, 25342, 61181, 147704, 356589, 860882, 2078353, 5017588, 12113529, 29244646, 70602821, 170450288, 411503397, 993457082, 2398417561, 5790292204 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generalized Pellian with second term equal to 4.

The generalized Pellian with second term equal to s has the terms a(n) = A000129(n)*s + A000129(n-1). The generating function is -(1+s*x-2*x)/(-1+2*x+x^2). - R. J. Mathar, Nov 22 2007

LINKS

T. D. Noe, Table of n, a(n) for n = 0..300

A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pps. 245-252.

A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 161-176.

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (2,1)

FORMULA

a(n) = [ (3+sqrt(2))(1+sqrt(2))^n - (3-sqrt(2))(1-sqrt(2))^n ]/2*sqrt(2).

a(n) = 2*A000129(n+2) - 3*A000129(n+1). - Creighton Dement, Oct 27 2004

G.f.: (1+2*x)/(1-2*x-x^2). - Philippe Deléham, Nov 03 2008

a(n) = binomial transform of 1, 3, 2, 6, 4, 12, ... . - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009

E.g.f.: exp(x)*cosh(sqrt(2)*x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Vaclav Kotesovec, Feb 16 2015

MAPLE

with(combinat): a:=n->2*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..26);  # Zerinvary Lajos, Apr 04 2008

MATHEMATICA

a=2; b=1; c=1; lst={b}; Do[c=a+b+c; AppendTo[lst, c]; a=b; b=c, {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)

LinearRecurrence[{2, 1}, {1, 4}, 30] (* Harvey P. Dale, Jul 27 2011 *)

PROG

(Haskell)

a048654 n = a048654_list !! n

a048654_list =

   1 : 4 : zipWith (+) a048654_list (map (* 2) $ tail a048654_list)

-- Reinhard Zumkeller, Aug 01 2011

(Maxima)

a[0]:1$

a[1]:4$

a[n]:=2*a[n-1]+a[n-2]$

A048654(n):=a[n]$

makelist(A048654(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */

(PARI) a(n)=(([0, 1; 1, 2]^n)*[1, 4]~)[1] \\ Charles R Greathouse IV, May 18 2015

CROSSREFS

Cf. A001333, A000129, A048655, A038761, A084214, A100525.

Sequence in context: A032288 A076859 A042833 * A122626 A135025 A231213

Adjacent sequences:  A048651 A048652 A048653 * A048655 A048656 A048657

KEYWORD

easy,nice,nonn

AUTHOR

Barry E. Williams

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 05:01 EST 2017. Contains 294988 sequences.