login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030515
Numbers with exactly 6 divisors.
19
12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
OFFSET
1,1
COMMENTS
Numbers which are either the 5th power of a prime or the product of a prime and the square of a different prime, i.e., numbers which are in A050997 (5th powers of primes) or A054753. - Henry Bottomley, Apr 25 2000
Also numbers which are the square root of the product of their proper divisors. - Amarnath Murthy, Apr 21 2001
Such numbers are multiplicatively 3-perfect (i.e., the product of divisors of a(n) equals a(n)^3). - Lekraj Beedassy, Jul 13 2005
Since A119479(6)=5, there are never more than 5 consecutive terms. Quintuples of consecutive terms start at 10093613546512321, 14414905793929921, 266667848769941521, ... (A141621). No such quintuple contains a term of the form p^5. - Ivan Neretin, Feb 08 2016
REFERENCES
Amarnath Murthy, A note on the Smarandache Divisor sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
LINKS
Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4, 1.12.
Eric Weisstein's World of Mathematics, Divisor Product
FORMULA
Union of A050997 and A054753. - Lekraj Beedassy, Jul 13 2005
A000005(a(n))=6. - Juri-Stepan Gerasimov, Oct 10 2009
MAPLE
N:= 1000: # to get all terms <= N
Primes:= select(isprime, {2, seq(i, i=3..floor(N/4))}):
S:= select(`<=`, {seq(p^5, p = Primes), seq(seq(p*q^2, p=Primes minus {q}), q=Primes)}, N):
sort(convert(S, list)); # Robert Israel, Feb 10 2016
MATHEMATICA
f[n_]:=Length[Divisors[n]]==6; lst={}; Do[If[f[n], AppendTo[lst, n]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
Select[Range[500], DivisorSigma[0, #]==6&] (* Harvey P. Dale, Oct 02 2014 *)
PROG
(PARI) is(n)=numdiv(n)==6 \\ Charles R Greathouse IV, Jan 23 2014
(Python)
from sympy import divisor_count
def ok(n): return divisor_count(n) == 6
print([k for k in range(429) if ok(k)]) # Michael S. Branicky, Dec 18 2021
CROSSREFS
Cf. A061117.
Sequence in context: A263838 A217856 A253388 * A162947 A351201 A359892
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition clarified by Jonathan Sondow, Jan 23 2014
STATUS
approved