

A061117


Maximum number of divisors for any composite between prime(n) and prime(n+1).


3



3, 4, 4, 6, 5, 6, 6, 8, 8, 9, 8, 8, 6, 10, 8, 12, 8, 8, 12, 8, 10, 12, 12, 9, 8, 8, 12, 10, 16, 8, 12, 8, 15, 12, 12, 12, 8, 16, 10, 18, 8, 14, 9, 12, 16, 16, 12, 12, 8, 12, 20, 8, 18, 12, 16, 16, 12, 16, 8, 18, 18, 12, 16, 12, 16, 20, 12, 12, 12, 8, 24, 12, 16, 12, 16, 18, 15, 16, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


LINKS

Harry J. Smith, Table of n, a(n) for n = 2,...,1000


FORMULA

a(n)=Max{d(c); p(n+1)>c>p(n)}, c is composite, p(n) is the nth prime and d=A000005()


EXAMPLE

p(30)=113 is followed by 13 composites; numbers of divisors are {8, 4, 6, 6, 4, 4, 16, 3, 4, 4, 6, 4, 12}, The smallest is 4=a(30) and the largest is 16.


PROG

(PARI) { n=1; q=3; forprime (p=5, prime(1003), a=0; for (i=q + 1, p  1, a=max(numdiv(i), a)); q=p; write("b061117.txt", n++, " ", a) ) } [From Harry J. Smith, Jul 18 2009]


CROSSREFS

Cf. A000005, A061112.
Sequence in context: A279678 A222283 A182487 * A290820 A111234 A255171
Adjacent sequences: A061114 A061115 A061116 * A061118 A061119 A061120


KEYWORD

nonn


AUTHOR

Labos Elemer, May 29 2001


STATUS

approved



