The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030514 a(n) = prime(n)^4. 86
 16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers with 5 divisors (1, p, p^2, p^3, p^4, where p is the n-th prime). - Alexandre Wajnberg, Jan 15 2006 Subsequence of A036967. - Reinhard Zumkeller, Feb 05 2008 The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008 The general product formula for even s is: product_{p = A000040} (p^s-1)/(p^s+1) = 2*Bernoulli(2s)/( binomial(2s, s)*Bernoulli^2(s)), where the infinite product is over all primes. Here, with s = 4, product_{n = 1, 2, ...} (a(n)-1)/(a(n)+1) = 6/7. In A030516, where s = 6, the product of the ratios is 691/715. For s = 8, the 8th row in A120458, the corresponding product of ratios is 7234/7293. - R. J. Mathar, Feb 01 2009 Solutions of the equation n' = 4*n^(3/4), where n' is the arithmetic derivative of n. - Paolo P. Lava, Oct 31 2012 Except for the first three terms, all others are congruent to 1 mod 240. - Robert Israel, Aug 29 2014 LINKS R. J. Mathar, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Prime Power. OEIS Wiki, Index entries for number of divisors FORMULA a(n) = A000040(n)^(5-1) = A000040(n)^4, where 5 is the number of divisors of a(n). - Omar E. Pol, May 06 2008 A000005(a(n)) = 5. - Alexandre Wajnberg, Jan 15 2006 A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011 Sum_{n>=1} 1/a(n) = P(4) = 0.0769931397... (A085964). - Amiram Eldar, Jul 27 2020 MAPLE map(p -> p^4, select(isprime, [2, seq(2*i+1, i=1..100)])); # Robert Israel, Aug 29 2014 MATHEMATICA Array[Prime[#]^4 &, 5!] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *) PROG (Sage) [p**4 for p in prime_range(100)] # Zerinvary Lajos, May 15 2007 (MAGMA) [NthPrime(n)^4: n in [1..100] ]; // Vincenzo Librandi, Apr 22 2011 (PARI) a(n)=prime(n)^4 \\ Charles R Greathouse IV, Mar 21 2013 (Haskell) a030514 = (^ 4) . a000040 a030514_list = map (^ 4) a000040_list -- Reinhard Zumkeller, Jun 03 2015 CROSSREFS Cf. A030078, A085964, A131991, A131992, A000005, A000040, A001248. Cf. A258601. Sequence in context: A153157 A113849 A046453 * A056571 A053909 A151502 Adjacent sequences:  A030511 A030512 A030513 * A030515 A030516 A030517 KEYWORD nonn,easy AUTHOR EXTENSIONS Description corrected by Eric W. Weisstein STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 19:53 EST 2020. Contains 338965 sequences. (Running on oeis4.)