

A030514


a(n) = prime(n)^4.


72



16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers with 5 divisors (1, p, p^2, p^3, p^4, where p is the nth prime).  Alexandre Wajnberg, Jan 15 2006
Subsequence of A036967.  Reinhard Zumkeller, Feb 05 2008
The nth number with p divisors is equal to the nth prime raised to power p1, where p is prime.  Omar E. Pol, May 06 2008
The general product formula for even s is: product_{p = A000040} (p^s1)/(p^s+1) = 2*Bernoulli(2s)/( binomial(2s, s)*Bernoulli^2(s)), where the infinite product is over all primes. Here, with s = 4, product_{n = 1, 2, ...} (a(n)1)/(a(n)+1) = 6/7. In A030516, where s = 6, the product of the ratios is 691/715. For s = 8, the 8th row in A120458, the corresponding product of ratios is 7234/7293.  R. J. Mathar, Feb 01 2009
Solutions of the equation n' = 4*n^(3/4), where n' is the arithmetic derivative of n.  Paolo P. Lava, Oct 31 2012
Except for the first three terms, all others are congruent to 1 mod 240.  Robert Israel, Aug 29 2014


LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Prime Power.
OEIS Wiki, Index entries for number of divisors
Index to sequences related to prime signature


FORMULA

a(n) = A000040(n)^(51) = A000040(n)^4, where 5 is the number of divisors of a(n).  Omar E. Pol, May 06 2008
A000005(a(n)) = 5.  Alexandre Wajnberg, Jan 15 2006
A056595(a(n)) = 2.  Reinhard Zumkeller, Aug 15 2011


MAPLE

map(p > p^4, select(isprime, [2, seq(2*i+1, i=1..100)])); # Robert Israel, Aug 29 2014


MATHEMATICA

Array[Prime[#]^4 &, 5!] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)


PROG

(Sage) BB = primes_first_n(36) list = [] for i in range(36): list.append(BB[i]^4) list # Zerinvary Lajos, May 15 2007
(MAGMA) [NthPrime(n)^4: n in [1..100] ]; // Vincenzo Librandi, Apr 22 2011
(PARI) a(n)=prime(n)^4 \\ Charles R Greathouse IV, Mar 21 2013
(Haskell)
a030514 = (^ 4) . a000040
a030514_list = map (^ 4) a000040_list
 Reinhard Zumkeller, Jun 03 2015


CROSSREFS

Cf. A030078, A131991, A131992, A000005, A000040, A001248.
Cf. A258601.
Sequence in context: A153157 A113849 A046453 * A056571 A053909 A151502
Adjacent sequences: A030511 A030512 A030513 * A030515 A030516 A030517


KEYWORD

nonn,easy


AUTHOR

Jeff Burch


EXTENSIONS

Description corrected by Eric W. Weisstein


STATUS

approved



