login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001248 Squares of primes. 217
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also 4, together with numbers n such that sum(d|n,(-1)^d) = -A048272(n) = -3 - Benoit Cloitre, Apr 14 2002

Also, all solutions to the equation sigma(x)+phi(x)=2x+1. - Farideh Firoozbakht, Feb 02 2005

Unique numbers having 3 divisors (1, their square root, themselves). - Alexandre Wajnberg, Jan 15 2006

Smallest (or first) new number deleted at the n-th step in an Eratosthenes sieve. - Lekraj Beedassy, Aug 17 2006

Subsequence of semiprimes A001358. - Lekraj Beedassy, Sep 06 2006

A000005(a(n)^(k-1)) = A005408(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007

Integers having only 1 factor other than 1 and the number itself. Every number in the sequence is a multiple of 1 factor other than 1 and the number itself. 4 : 2 is the only factor other than 1 and 4; 9 : 3 is the only factor other than 1 and 9; and so on. - Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 23 2007

The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

There are 2 Abelian groups of order p^2 (C_p^2 and C_p x C_p) and no non-Abelian group. - Franz Vrabec, Sep 11 2008

For n > 2: (a(n) + 17) mod 12 = 6. - Reinhard Zumkeller, May 12 2010

A192134(A095874(a(n))) = A005722(n) + 1. - Reinhard Zumkeller, Jun 26 2011

For n > 2: a(n) = 1 (mod 24). - Moshe Levin, Dec 07 2011

A211110(a(n)) = 2. - Reinhard Zumkeller, Apr 02 2012

Solutions of the differential equation n'=2*sqrt(n), where n' is the arithmetic derivative of n. - Paolo P. Lava, Apr 23 2012

Also numbers n such that phi(n) = n - sqrt(n). - Michel Lagneau, May 25 2012

a(n) = A087112(n,n). - Reinhard Zumkeller, Nov 25 2012

For n > 1, n is the sum of numbers from A006254(n-1) to A168565(n-1). - Vicente Izquierdo Gomez, Dec 01 2012

Numbers whose multiplicative projection (A000026) is equal to their arithmetic derivative (A003415). - Paolo P. Lava, Dec 11 2012

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 1..5000

Eric Weisstein's World of Mathematics, Prime Power

OEIS Wiki, Index entries for number of divisors

FORMULA

n such that A062799(n)=2 - Benoit Cloitre, Apr 06 2002

a(n)=A000040(n)^(3-1)=A000040(n)^2, where 3 is the number of divisors of a(n). - Omar E. Pol, May 06 2008

A000005(a(n)) = 3 or A002033(a(n)) = 2. - Juri-Stepan Gerasimov, Oct 10 2009

A033273(a(n)) = 3. [Juri-Stepan Gerasimov, Dec 07 2009]

MAPLE

A001248:=n->ithprime(n)^2; seq(A001248(k), k=1..50); # Wesley Ivan Hurt, Oct 11 2013

MATHEMATICA

Prime[Range[30]]^2 (* Moshe Levin, Dec 07 2011 *)

PROG

(Sage) BB = primes_first_n(36) list = [] for i in range(36): list.append(BB[i]^2) list # Zerinvary Lajos, May 15 2007

(PARI) forprime(p=2, 1e3, print1(p^2", ")) \\ Charles R Greathouse IV, Jun 10 2011

(PARI) A001248(n)=prime(n)^2  \\ M. F. Hasler, Sep 16 2012

(Haskell)

a001248 n = a001248_list !! (n-1)

a001248_list = map (^ 2) a000040_list -- Reinhard Zumkeller, Sep 23 2011

(MAGMA) [p^2: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 27 2014

CROSSREFS

Cf. A000040, A049001, A024450, A008864, A060800.

Subsequence of A000430.

Sequence in context: A179707 A247078 A077438 * A052043 A188836 A030146

Adjacent sequences:  A001245 A001246 A001247 * A001249 A001250 A001251

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 16:27 EST 2014. Contains 250364 sequences.