login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036967 4-full numbers: if a prime p divides n then so does p^4. 11
1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 2592, 3125, 3888, 4096, 5184, 6561, 7776, 8192, 10000, 10368, 11664, 14641, 15552, 15625, 16384, 16807, 19683, 20000, 20736, 23328, 28561, 31104, 32768, 34992 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(m) mod prime(n) > 0 for m < A258601(n); a(A258601(n)) = A030514(n) = prime(n)^4. - Reinhard Zumkeller, Jun 06 2015

REFERENCES

E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.

LINKS

T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 1..10000, (first 300 terms by T. D. Noe)

MATHEMATICA

Join[{1}, Select[Range[35000], Min[Transpose[FactorInteger[#]][[2]]]>3&]] (* Harvey P. Dale, Jun 05 2012 *)

PROG

(Haskell)

import Data.Set (singleton, deleteFindMin, fromList, union)

a036967 n = a036967_list !! (n-1)

a036967_list = 1 : f (singleton z) [1, z] zs where

   f s q4s p4s'@(p4:p4s)

     | m < p4 = m : f (union (fromList $ map (* m) ps) s') q4s p4s'

     | otherwise = f (union (fromList $ map (* p4) q4s) s) (p4:q4s) p4s

     where ps = a027748_row m

           (m, s') = deleteFindMin s

   (z:zs) = a030514_list

-- Reinhard Zumkeller, Jun 03 2015

(PARI) is(n)=n==1 || vecmin(factor(n)[, 2])>3 \\ Charles R Greathouse IV, Sep 17 2015

CROSSREFS

A030514 is a subsequence.

Cf. A001694, A036966, A046101, A258601.

Sequence in context: A018923 A264901 A172418 * A076468 A246550 A197917

Adjacent sequences:  A036964 A036965 A036966 * A036968 A036969 A036970

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Erich Friedman.

Corrected by Vladeta Jovovic, Aug 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 06:58 EST 2016. Contains 278775 sequences.