|
|
A036967
|
|
4-full numbers: if a prime p divides n then so does p^4.
|
|
11
|
|
|
1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 2592, 3125, 3888, 4096, 5184, 6561, 7776, 8192, 10000, 10368, 11664, 14641, 15552, 15625, 16384, 16807, 19683, 20000, 20736, 23328, 28561, 31104, 32768, 34992
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(m) mod prime(n) > 0 for m < A258601(n); a(A258601(n)) = A030514(n) = prime(n)^4. - Reinhard Zumkeller, Jun 06 2015
|
|
REFERENCES
|
E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.
|
|
LINKS
|
T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 1..10000, (first 300 terms from T. D. Noe)
|
|
FORMULA
|
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) = 1.1488462139214317030108176090790939019972506733993367867997411290952527... - Amiram Eldar, Jul 09 2020
|
|
MATHEMATICA
|
Join[{1}, Select[Range[35000], Min[Transpose[FactorInteger[#]][[2]]]>3&]] (* Harvey P. Dale, Jun 05 2012 *)
|
|
PROG
|
(Haskell)
import Data.Set (singleton, deleteFindMin, fromList, union)
a036967 n = a036967_list !! (n-1)
a036967_list = 1 : f (singleton z) [1, z] zs where
f s q4s p4s'@(p4:p4s)
| m < p4 = m : f (union (fromList $ map (* m) ps) s') q4s p4s'
| otherwise = f (union (fromList $ map (* p4) q4s) s) (p4:q4s) p4s
where ps = a027748_row m
(m, s') = deleteFindMin s
(z:zs) = a030514_list
-- Reinhard Zumkeller, Jun 03 2015
(PARI) is(n)=n==1 || vecmin(factor(n)[, 2])>3 \\ Charles R Greathouse IV, Sep 17 2015
|
|
CROSSREFS
|
A030514 is a subsequence.
Cf. A001694, A036966, A046101, A258601.
Sequence in context: A264901 A339840 A172418 * A076468 A246550 A197917
Adjacent sequences: A036964 A036965 A036966 * A036968 A036969 A036970
|
|
KEYWORD
|
easy,nonn,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002
|
|
STATUS
|
approved
|
|
|
|