login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046101
Biquadrateful numbers.
25
16, 32, 48, 64, 80, 81, 96, 112, 128, 144, 160, 162, 176, 192, 208, 224, 240, 243, 256, 272, 288, 304, 320, 324, 336, 352, 368, 384, 400, 405, 416, 432, 448, 464, 480, 486, 496, 512, 528, 544, 560, 567, 576, 592, 608, 624, 625, 640, 648, 656, 672, 688, 704
OFFSET
1,1
COMMENTS
The convention in the OEIS is that squareful, cubeful (A046099), biquadrateful, ... mean the same as "not squarefree" etc., while 2- or square-full, 3- or cube-full (A036966), 4-full (A036967) are used for Golomb's notion of powerful numbers (A001694, see references there), when each prime factor occurs to a power > 1. - M. F. Hasler, Feb 12 2008
Also solutions to equation tau_{-3}(n)=0, where tau_{-3} is A007428. - Enrique Pérez Herrero, Jan 19 2013
Sum_{n>0} 1/a(n)^s = Zeta(s) - Zeta(s)/Zeta(4s). - Enrique Pérez Herrero, Jan 21 2013
A051903(a(n)) > 3. - Reinhard Zumkeller, Sep 03 2015
The asymptotic density of this sequence is 1 - 1/zeta(4) = 1 - 90/Pi^4 = 0.076061... - Amiram Eldar, Jul 09 2020
LINKS
Eric Weisstein's World of Mathematics, Biquadratefree.
MAPLE
with(NumberTheory):
isBiquadrateful := n -> is(denom(Radical(n) / LargestNthPower(n, 2)) <> 1):
select(isBiquadrateful, [`$`(1..704)]); # Peter Luschny, Jul 12 2022
MATHEMATICA
lst={}; Do[a=0; Do[If[FactorInteger[m][[n, 2]]>3, a=1], {n, Length[FactorInteger[m]]}]; If[a==1, AppendTo[lst, m]], {m, 10^3}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 15 2008 *)
Select[Range[1000], Max[Transpose[FactorInteger[#]][[2]]]>3&] (* Harvey P. Dale, May 25 2014 *)
PROG
(Haskell)
a046101 n = a046101_list !! (n-1)
a046101_list = filter ((> 3) . a051903) [1..]
-- Reinhard Zumkeller, Sep 03 2015
(PARI) is(n)=n>9 && vecmax(factor(n)[, 2])>3 \\ Charles R Greathouse IV, Sep 03 2015
(Python)
from sympy import mobius, integer_nthroot
def A046101(n):
def f(x): return n+sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x, 4)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 05 2024
CROSSREFS
KEYWORD
nonn
STATUS
approved