This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036966 3-full (or cube-full, or cubefull) numbers: if a prime p divides n then so does p^3. 21
 1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 432, 512, 625, 648, 729, 864, 1000, 1024, 1296, 1331, 1728, 1944, 2000, 2048, 2187, 2197, 2401, 2592, 2744, 3125, 3375, 3456, 3888, 4000, 4096, 4913, 5000, 5184, 5488, 5832, 6561, 6859, 6912, 7776, 8000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also called powerful_3 numbers. For n > 1: A124010(a(n),k) > 2, k = 1..A001221(a(n)). - Reinhard Zumkeller, Dec 15 2013 a(m) mod prime(n) > 0 for m < A258600(n); a(A258600(n)) = A030078(n) = prime(n)^3. - Reinhard Zumkeller, Jun 06 2015 REFERENCES M. J. Halm, More Sequences, Mpossibilities 83, April 2003. A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407. E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe) P. Erdős and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged), 7 (1935), 95-102. M. J. Halm, Sequences MAPLE isA036966 := proc(n)     local p ;     for p in ifactors(n)[2] do         if op(2, p) < 3 then             return false;         end if;     end do:     return true ; end proc: A036966 := proc(n)     option remember;     if n = 1 then         1 ;     else         for a from procname(n-1)+1 do             if isA036966(a) then                 return a;             end if;         end do:     end if; end proc: # R. J. Mathar, May 01 2013 MATHEMATICA Select[ Range[2, 8191], Min[ Table[ # [[2]], {1}] & /@ FactorInteger[ # ]] > 2 &] Join[{1}, Select[Range[8000], Min[Transpose[FactorInteger[#]][[2]]]>2&]] (* Harvey P. Dale, Jul 17 2013 *) PROG (Haskell) import Data.Set (singleton, deleteFindMin, fromList, union) a036966 n = a036966_list !! (n-1) a036966_list = 1 : f (singleton z) [1, z] zs where    f s q3s p3s'@(p3:p3s)      | m < p3 = m : f (union (fromList \$ map (* m) ps) s') q3s p3s'      | otherwise = f (union (fromList \$ map (* p3) q3s) s) (p3:q3s) p3s      where ps = a027748_row m            (m, s') = deleteFindMin s    (z:zs) = a030078_list -- Reinhard Zumkeller, Jun 03 2015, Dec 15 2013 (PARI) is(n)=n==1 || vecmin(factor(n)[, 2])>2 \\ Charles R Greathouse IV, Sep 17 2015 (PARI) list(lim)=my(v=List(), t); for(a=1, sqrtnint(lim\1, 5), for(b=1, sqrtnint(lim\a^5, 4), t=a^5*b^4; for(c=1, sqrtnint(lim\t, 3), listput(v, t*c^3)))); Set(v) \\ Charles R Greathouse IV, Nov 20 2015 CROSSREFS Cf. A001694, A030078, A036967, A258600. Sequence in context: A107606 A245713 A320966 * A076467 A111231 A111307 Adjacent sequences:  A036963 A036964 A036965 * A036967 A036968 A036969 KEYWORD easy,nonn,nice AUTHOR EXTENSIONS More terms from Erich Friedman Corrected by Vladeta Jovovic, Aug 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)