login
A076467
Perfect powers m^k where m is a positive integer and k >= 3.
26
1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 512, 625, 729, 1000, 1024, 1296, 1331, 1728, 2048, 2187, 2197, 2401, 2744, 3125, 3375, 4096, 4913, 5832, 6561, 6859, 7776, 8000, 8192, 9261, 10000, 10648, 12167, 13824, 14641, 15625, 16384, 16807
OFFSET
1,2
COMMENTS
If p|n with p prime then p^3|n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms n = 1..250 from Reinhard Zumkeller)
FORMULA
For n > 1: GCD(exponents in prime factorization of a(n)) > 2, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
Sum_{n>=1} 1/a(n) = 2 - zeta(2) + Sum_{k>=2} mu(k)*(2 - zeta(k) - zeta(2*k)) = 1.3300056287... - Amiram Eldar, Jul 02 2022
MAPLE
N:= 10^5: # to get all terms <= N
S:= {1, seq(seq(m^k, m = 2 .. floor(N^(1/k))), k=3..ilog2(N))}:
sort(convert(S, list)); # Robert Israel, Sep 30 2015
MATHEMATICA
a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 2, a = Append[a, n]; Print[n]], {n, 2, 17575}]; a
(* Second program: *)
n = 10^5; Join[{1}, Table[m^k, {k, 3, Floor[Log[2, n]]}, {m, 2, Floor[n^(1/k)]}] // Flatten // Union] (* Jean-François Alcover, Feb 13 2018, after Robert Israel *)
PROG
(Haskell)
a076467 n = a076467_list !! (n-1)
a076467_list = 1 : filter ((> 2) . foldl1 gcd . a124010_row) [2..]
-- Reinhard Zumkeller, Apr 13 2012
(Haskell)
import qualified Data.Set as Set (null)
import Data.Set (empty, insert, deleteFindMin)
a076467 n = a076467_list !! (n-1)
a076467_list = 1 : f [2..] empty where
f xs'@(x:xs) s | Set.null s || m > x ^ 3 = f xs $ insert (x ^ 3, x) s
| m == x ^ 3 = f xs s
| otherwise = m : f xs' (insert (m * b, b) s')
where ((m, b), s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 18 2013
(PARI) is(n)=ispower(n)>2||n==1 \\ Charles R Greathouse IV, Sep 03 2015, edited for n=1 by M. F. Hasler, May 26 2018
(PARI) A076467(lim)={my(L=List(1), lim2=logint(lim, 2), m, k); for(k=3, lim2, for(m=2, sqrtnint(lim, k), listput(L, m^k); )); listsort(L, 1); L}
b076467(lim)={my(L=A076467(lim)); for(i=1, #L, print(i , " ", L[i])); } \\ Anatoly E. Voevudko, Sep 29 2015, edited by M. F. Hasler, May 25 2018
(PARI) A076467_vec(LIM, S=List(1))={for(x=2, sqrtnint(LIM, 3), for(k=3, logint(LIM, x), listput(S, x^k))); Set(S)} \\ M. F. Hasler, May 25 2018
(Python)
from sympy import mobius, integer_nthroot
def A076467(n):
def f(x): return int(n-1+x-integer_nthroot(x, 4)[0]+sum(mobius(k)*(integer_nthroot(x, k)[0]+integer_nthroot(x, k<<1)[0]-2) for k in range(3, x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 14 2024
CROSSREFS
Subsequence of A036966.
Sequence in context: A245713 A320966 A036966 * A111231 A111307 A246549
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 14 2002
EXTENSIONS
Edited by Robert Israel, Sep 30 2015
STATUS
approved