login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065483 Decimal expansion of totient constant product(1 + 1/(p^2*(p-1))), p prime >= 2). 3
1, 3, 3, 9, 7, 8, 4, 1, 5, 3, 5, 7, 4, 3, 4, 7, 2, 4, 6, 5, 9, 9, 1, 5, 2, 5, 8, 6, 5, 1, 4, 8, 8, 6, 0, 5, 2, 7, 7, 5, 2, 4, 2, 2, 4, 9, 7, 8, 8, 1, 8, 2, 8, 0, 6, 6, 6, 3, 0, 1, 5, 0, 6, 7, 6, 4, 6, 7, 9, 4, 8, 2, 7, 2, 7, 6, 0, 0, 9, 8, 2, 3, 7, 3, 7, 3, 4, 3, 6, 6, 4, 4, 0, 8, 5, 0, 4, 5, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..99.

G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]

Eric Weisstein's World of Mathematics, Totient Summatory Function

EXAMPLE

1.339784153574347246599152586514886052775...

MATHEMATICA

$MaxExtraPrecision = 500; digits = 99; terms = 500; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0}, LinearRecurrence[{2, -1, -1, 1}, {3, 4, 5, 3}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)

CROSSREFS

Cf. A065484, A078074.

Sequence in context: A156164 A198613 A197031 * A019745 A173815 A188615

Adjacent sequences:  A065480 A065481 A065482 * A065484 A065485 A065486

KEYWORD

cons,nonn

AUTHOR

N. J. A. Sloane, Nov 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 10:49 EST 2016. Contains 278939 sequences.