|
|
A048111
|
|
Number of unitary divisors of n (A034444) < number of non-unitary divisors of n (A048105).
|
|
7
|
|
|
16, 32, 36, 48, 64, 72, 80, 81, 96, 100, 108, 112, 128, 144, 160, 162, 176, 180, 192, 196, 200, 208, 216, 224, 225, 240, 243, 252, 256, 272, 288, 300, 304, 320, 324, 336, 352, 360, 368, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 464, 468, 480, 484
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers n that are expressible as a product of 2 "nonsquarefree" numbers (i.e., there are 2 integers x,y in A001694 such that n = xy). - Benoit Cloitre, Jan 01 2003
Also numbers having more than one square divisor > 1: A046951(a(n)) > 2. - Reinhard Zumkeller, Apr 08 2003
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
A000005(a(n)) > 2^(1 + A001221(a(n))).
|
|
EXAMPLE
|
36 is in the sequence since the number of its unitary divisors, {1, 4, 9, 36} is 4 which is smaller than 5, the number of its non-unitary divisors, {2, 3, 6, 12, 18}.
|
|
MATHEMATICA
|
Select[Range[484], DivisorSigma[0, #] > 2^(PrimeNu[#]+1) &] (* Amiram Eldar, Jun 11 2019 *)
|
|
PROG
|
(PARI) is(n)=my(f=factor(n)[, 2], t); for(i=1, #f, if(f[i]>1, if(t||f[i]>3, return(1), t=1))); 0 \\ Charles R Greathouse IV, Sep 17 2015
|
|
CROSSREFS
|
Cf. A000005, A001221, A034444, A048105, A048109, A082293, A013929, A082294, A082295.
Sequence in context: A296761 A297288 A055075 * A122614 A046101 A044856
Adjacent sequences: A048108 A048109 A048110 * A048112 A048113 A048114
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer
|
|
STATUS
|
approved
|
|
|
|