login
A002709
Triangulations of the disk G_{n,0}.
(Formerly M3933 N1618)
16
1, 1, 1, 5, 24, 133, 846, 5661, 39556, 286000, 2123329, 16112057, 124512556, 977227830, 7772368380, 62535450861, 508271324688, 4168218286276, 34455941596060, 286864341314320, 2403705165816240, 20258850167232165, 171652324167433710, 1461462393790971585, 12498416291503945764
OFFSET
0,4
COMMENTS
Apparently, also the number of regular flexagons of order 3(n+1) (see Oakley-Wisner link pp. 149-151). - Michel Marcus, Jun 23 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
C. O. Oakley and R. J. Wisner, Flexagons, The American Mathematical Monthly, Vol. 64, No. 3 (Mar., 1957), pp. 143-154.
PROG
(PARI) a(n) = {if (n % 3 == 0, k = n/3; return (binomial(12*k-1, 3*k-1)/((6*k-1)*(12*k-1))); ); if (n % 3 == 1, k = (n-1)/3; return (binomial(12*k+3, 3*k)/(3*(4*k+1)*(6*k+1))+2*binomial(4*k, k)/(3*(3*k+1))); ); if (n % 3 == 2, k = (n-2)/3; return (binomial(12*k+7, 3*k+1)/(3*(2*k+1)*(12*k+7))+4*binomial(4*k+1, k)/(3*(3*k+2))); ); } \\ (number of regular flexagons of order 3*n) Michel Marcus, Jun 15 2013
CROSSREFS
Column k=0 of A262586.
Sequence in context: A036919 A020067 A066118 * A193668 A009411 A080996
KEYWORD
nonn
EXTENSIONS
Extended by Max Alekseyev, Mar 30 2009
a(22) onwards from Andrew Howroyd, Nov 23 2024
STATUS
approved