OFFSET
0,4
COMMENTS
Apparently, also the number of regular flexagons of order 3(n+1) (see Oakley-Wisner link pp. 149-151). - Michel Marcus, Jun 23 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
C. O. Oakley and R. J. Wisner, Flexagons, The American Mathematical Monthly, Vol. 64, No. 3 (Mar., 1957), pp. 143-154.
PROG
(PARI) a(n) = {if (n % 3 == 0, k = n/3; return (binomial(12*k-1, 3*k-1)/((6*k-1)*(12*k-1))); ); if (n % 3 == 1, k = (n-1)/3; return (binomial(12*k+3, 3*k)/(3*(4*k+1)*(6*k+1))+2*binomial(4*k, k)/(3*(3*k+1))); ); if (n % 3 == 2, k = (n-2)/3; return (binomial(12*k+7, 3*k+1)/(3*(2*k+1)*(12*k+7))+4*binomial(4*k+1, k)/(3*(3*k+2))); ); } \\ (number of regular flexagons of order 3*n) Michel Marcus, Jun 15 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Max Alekseyev, Mar 30 2009
a(22) onwards from Andrew Howroyd, Nov 23 2024
STATUS
approved