The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001068 a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5. 24
 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From M. F. Hasler, Oct 21 2008: (Start) Also, for n>0, the 4th term (after [0,n,3n]) in the continued fraction expansion of arctan(1/n). (Observation by V. Reshetnikov) Proof: arctan(1/n) = (1/n) / (1 + (1/n)^2/( 3 + (2/n)^2/( 5 + (3/n)^2/( 7 + ...)...) = 1 / ( n + 1/( 3n + 4/( 5n + 9/( 7n + 25/(...)...) = 1 / ( n + 1/( 3n + 1/( 5n/4 + (9/4)/( 7n + 25/(...)...), and the term added to 5n/4, (9/4)/(7n+...) = (1/4)*9/(7n+...) is less than 1/4 for all n>=2. (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 P. Erdős, Some recent problems and results in graph theory, Discr. Math., 164 (1997), 81-85. Wikipedia, Continued fraction for arctangent. R. Witula, P. Lorenc, M. Rozanski, M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014. Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008 a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011. From Bruno Berselli, Oct 17 2011:  (Start) G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)). a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8. a(-n) = -A047203(n+1). (End) From Wesley Ivan Hurt, Sep 17 2015: (Start) a(n) = a(n-1) + a(n-4) - a(n-5) for n>4. a(n) = n + floor(n/4). (End) a(n) = n + A002265(n). - Robert Israel, Sep 17 2015 E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016 MAPLE A001068:=n->floor(5*n/4); seq(A001068(k), k=0..100); # Wesley Ivan Hurt, Nov 07 2013 MATHEMATICA Table[Floor[5*n/4], {n, 0, 120}] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *) PROG (PARI) a(n)=5*n\4 /* or, cf. comment: */ a(n)=contfrac(atan(1/n))[4] \\ M. F. Hasler, Oct 21 2008 (MAGMA) [Floor(5*n/4): n in [0..80]]; // Vincenzo Librandi, Nov 13 2011 CROSSREFS Cf. A002265, A030308, A047203, A110255, A110256, A110257, A110258, A110259, A110260, A177704 (first differences), A249547. Sequence in context: A028798 A138309 A184514 * A039145 A242491 A038129 Adjacent sequences:  A001065 A001066 A001067 * A001069 A001070 A001071 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from James A. Sellers, Sep 19 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 23:45 EDT 2020. Contains 334581 sequences. (Running on oeis4.)