login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139400
Number of spanning trees in the graph P_6 x P_n.
6
1, 780, 380160, 170537640, 74795194705, 32565539635200, 14143261515284447, 6136973985625588560, 2662079368040434932480, 1154617875754582889149500, 500769437567956298239402223, 217185579535490113365186969600
OFFSET
1,2
COMMENTS
Also number of domino tilings of the 11 X (2n-1) rectangle with upper left corner removed. - Alois P. Heinz, Apr 14 2011
A linear divisibility sequence of order 32; a(n) divides a(m) whenever n divides m. It is the product of four linear divisibility sequences - three Lucas sequences of order 2 and one linear divisibility sequence of order 4. - Peter Bala, Apr 27 2014
LINKS
Paul Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008.
Index entries for linear recurrences with constant coefficients, signature (780, -194881, 22377420, -1419219792, 55284715980, -1410775106597, 24574215822780, -300429297446885, 2629946465331120, -16741727755133760, 78475174345180080, -273689714665707178, 716370537293731320, -1417056251105102122, 2129255507292156360, -2437932520099475424, 2129255507292156360, -1417056251105102122, 716370537293731320, -273689714665707178, 78475174345180080, -16741727755133760, 2629946465331120, -300429297446885, 24574215822780, -1410775106597, 55284715980, -1419219792, 22377420, -194881, 780, -1).
FORMULA
a(n) = 780 a(n-1) - 194881 a(n-2) + 22377420 a(n-3) - 1419219792 a(n-4) + 55284715980 a(n-5) - 1410775106597 a(n-6) + 24574215822780 a(n-7) - 300429297446885 a(n-8) + 2629946465331120 a(n-9) - 16741727755133760 a(n-10)
+ 78475174345180080 a(n-11) - 273689714665707178 a(n-12) + 716370537293731320 a(n-13) - 1417056251105102122 a(n-14) + 2129255507292156360 a(n-15) - 2437932520099475424 a(n-16) + 2129255507292156360 a(n-17)
- 1417056251105102122 a(n-18) + 716370537293731320 a(n-19) - 273689714665707178 a(n-20) + 78475174345180080 a(n-21) - 16741727755133760 a(n-22) + 2629946465331120 a(n-23) - 300429297446885 a(n-24) + 24574215822780 a(n-25) - 1410775106597 a(n-26) + 55284715980 a(n-27) - 1419219792 a(n-28) + 22377420 a(n-29) - 194881 a(n-30) + 780 a(n-31) - a(n-32).
From Peter Bala, Apr 27 2014: (Start)
a(n) = Resultant( U(5,(x-4)/2), U(n-1,x/2) ), where U(n,x) denotes the Chebyshev polynomial of the second kind. The polynomial U(5,(x-4)/2) = x^5 - 20*x^4 + 156*x^3 - 592*x^2 + 1091*x - 780 (see A159764) has zeros z_1 = 3, z_2 = 4, z_3 = 5, z_4 = 4 + sqrt(3) and z_5 = 4 - sqrt(3). Hence a(n) = U(n-1,3/2)*U(n-1,2)*U(n-1,5/2)*U(n-1,1/2*(4 + sqrt(3)))*U(n-1,1/2*(4 - sqrt(3))).
a(n) = A001906(n)*A001353(n)*A004254(n)*A161498(n). (End)
EXAMPLE
a(2) = 780, as can be verified from the seventh entry of A001353, which corresponds to the number of spanning trees of the same graph.
MAPLE
seq(resultant(simplify(ChebyshevU(5, (x-4)*(1/2))), simplify(ChebyshevU(n-1, (1/2)*x)), x), n = 1 .. 12); # Peter Bala, Apr 27 2014
MATHEMATICA
Array[Resultant[ChebyshevU[5, x/2-2], ChebyshevU[#-1, x/2], x] &, 20] (* Paolo Xausa, Mar 17 2024, after Peter Bala *)
CROSSREFS
Row m=6 of A116469.
Bisection of A210724 (odd part). A001353, A001906, A004254, A159764, A161498.
Sequence in context: A135198 A292063 A250952 * A115467 A338877 A375914
KEYWORD
easy,nonn
AUTHOR
Paul Raff, Jun 09 2008; corrected recurrence Feb 03 2009
STATUS
approved