login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159764 Riordan array (1/(1+4x+x^2), x/(1+4x+x^2)). 13
1, -4, 1, 15, -8, 1, -56, 46, -12, 1, 209, -232, 93, -16, 1, -780, 1091, -592, 156, -20, 1, 2911, -4912, 3366, -1200, 235, -24, 1, -10864, 21468, -17784, 8010, -2120, 330, -28, 1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, -151316, 386373 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums are (-1)^n*F(2n+2). Diagonal sums are (-1)^n*4^n. Inverse is A052179.

The positive matrix is (1/(1-4x+x^2), x/(1-4x+x^2)) with general term T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,2),0).

For another version, see A124029.

Triangle of coefficients of Chebyshev's S(n,x-4) polynomials (exponents of x in increasing order). - Philippe Deléham, Feb 22 2012

Subtriangle of triangle given by (0, -4, 1/4, -1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 22 2012

LINKS

G. C. Greubel, Rows n=0..100 of triangle, flattened

FORMULA

Number triangle T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,-2),0).

G.f.: 1/(1+4*x+x^2-y*x). - Philippe Deléham, Feb 22 2012

T(n,k) = (-4)*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 22 2012

EXAMPLE

Triangle begins

     1;

    -4,     1;

    15,    -8,     1;

   -56,    46,   -12,     1;

   209,  -232,    93,   -16,     1;

  -780,  1091,  -592,   156,   -20,     1;

  2911, -4912,  3366, -1200,   235,   -24,     1;

Triangle (0, -4, 1/4, -1/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:

  1;

  0,    1;

  0,   -4,    1;

  0,   15,   -8,    1;

  0,  -56,   46,  -12,    1;

  0,  209, -232,   93,  -16,    1;

MATHEMATICA

CoefficientList[CoefficientList[Series[1/(1 + 4*x + x^2 - y*x), {x, 0, 10}, {y, 0, 10}], x], y]//Flatten (* G. C. Greubel, May 21 2018 *)

PROG

(Sage)

@CachedFunction

def A159764(n, k):

    if n< 0: return 0

    if n==0: return 1 if k == 0 else 0

    return A159764(n-1, k-1)-A159764(n-2, k)-4*A159764(n-1, k)

for n in (0..9): [A159764(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012

CROSSREFS

Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials : A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.

Sequence in context: A156290 A080419 A095307 * A124029 A207823 A056920

Adjacent sequences:  A159761 A159762 A159763 * A159765 A159766 A159767

KEYWORD

easy,sign,tabl

AUTHOR

Paul Barry, Apr 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 20:42 EST 2019. Contains 329323 sequences. (Running on oeis4.)