OFFSET
0,2
COMMENTS
Row sums are (-1)^n*F(2n+2). Diagonal sums are (-1)^n*4^n. Inverse is A052179.
The positive matrix is (1/(1-4x+x^2), x/(1-4x+x^2)) with general term T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,2),0).
For another version, see A124029.
Triangle of coefficients of Chebyshev's S(n,x-4) polynomials (exponents of x in increasing order). - Philippe Deléham, Feb 22 2012
Subtriangle of triangle given by (0, -4, 1/4, -1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 22 2012
LINKS
G. C. Greubel, Rows n=0..100 of triangle, flattened
FORMULA
Number triangle T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,-2),0).
G.f.: 1/(1+4*x+x^2-y*x). - Philippe Deléham, Feb 22 2012
T(n,k) = (-4)*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 22 2012
EXAMPLE
Triangle begins
1;
-4, 1;
15, -8, 1;
-56, 46, -12, 1;
209, -232, 93, -16, 1;
-780, 1091, -592, 156, -20, 1;
2911, -4912, 3366, -1200, 235, -24, 1;
Triangle (0, -4, 1/4, -1/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1;
0, 1;
0, -4, 1;
0, 15, -8, 1;
0, -56, 46, -12, 1;
0, 209, -232, 93, -16, 1;
MATHEMATICA
CoefficientList[CoefficientList[Series[1/(1 + 4*x + x^2 - y*x), {x, 0, 10}, {y, 0, 10}], x], y]//Flatten (* G. C. Greubel, May 21 2018 *)
PROG
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Apr 21 2009
STATUS
approved