This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124029 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise. 3
 1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The matrices are {4} if n=1, {{4,-1},{-1,4}} if n=2, {{4,-1,0},{-1,4,-1},{0,-1,4}} if n=3 etc. The empty matrix at n=0 has an empty product (determinant) with assigned value =1. Riordan array (1/(1-4*x+x^2), -x/(1-4*x+x^2)). - Philippe Deléham, Mar 04 2016 LINKS Joanne Dombrowski, Tridiagonal matrix representations of cyclic selfadjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334. EXAMPLE 1; 4, -1; 15, -8, 1; 56, -46,12, -1; 209, -232, 93, -16, 1; 780, -1091, 592, -156, 20, -1; 2911, -4912, 3366, -1200, 235, -24, 1; 10864, -21468, 17784, -8010, 2120, -330, 28, -1; MAPLE A123966x := proc(n, x)     local A, r, c ;     A := Matrix(1..n, 1..n) ;     for r from 1 to n do     for c from 1 to n do             A[r, c] :=0 ;         if r = c then             A[r, c] := A[r, c]+4 ;         elif abs(r-c)= 1 then             A[r, c] :=  A[r, c]-1 ;         end if;     end do:     end do:     (-1)^n*LinearAlgebra[CharacteristicPolynomial](A, x) ; end proc; A123966 := proc(n, k)     coeftayl( A123966x(n, x), x=0, k) ; end proc: seq(seq(A123966(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Dec 06 2011 MATHEMATICA (* Matrix version*) k = 4; T[n_, m_, d_] := If[ n == m, k, If[n == m - 1 || n == m + 1, -1, 0]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] (* Recursive Polynomial form*) b[k_] = 4; a[k_] = -1; p[0, x] = 1; p[1, x] = (x - b[1])/a[1]; p[k_, x_] := p[k, x] = ((x - b[k - 1])*p[k - 1, x] - a[k - 2] *p[k - 2, x])/a[k - 1; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w] CROSSREFS Cf. A123966, A159764. Sequence in context: A080419 A095307 A159764 * A207823 A056920 A123382 Adjacent sequences:  A124026 A124027 A124028 * A124030 A124031 A124032 KEYWORD tabl,sign AUTHOR Gary W. Adamson and Roger L. Bagula, Nov 01 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 09:36 EST 2019. Contains 329953 sequences. (Running on oeis4.)