login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007070 a(n) = 4*a(n-1) - 2*a(n-2) with a(0) = 1, a(1) = 4.
(Formerly M3482)
56
1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, 259808, 887040, 3028544, 10340096, 35303296, 120532992, 411525376, 1405035520, 4797091328, 16378294272, 55918994432, 190919389184, 651839567872 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 4) is "size of raises in pot-limit poker, one blind, maximum raising."

It appears that this sequence is the BinomialMean transform of A002315 - see A075271. - John W. Layman, Oct 02 2002

Number of (s(0), s(1), ..., s(2n+3)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,....,2n+3, s(0) = 1, s(2n+3) = 4. - Herbert Kociemba, Jun 11 2004

a(n) = number of distinct matrix products in (A+B+C+D)^n where commutators [A,B]=[C,D]=0 but neither A nor B commutes with C or D. - Paul D. Hanna and Joshua Zucker, Feb 01 2006

The n-th term of the sequence is the entry (1,2) in the n-th power of the matrix M=[1,-1;-1,3]. - Simone Severini, Feb 15 2006

Hankel transform of this sequence is [1,-2,0,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007

A204089 convolved with A000225, e.g., a(4) = 164 = (1*31 + 1*15 + 4*7 + 14*3 + 48*1) = (31 + 15 + 28 + 42 + 48). - Gary W. Adamson, Dec 23 2008

Equals INVERT transform of A000225: (1, 3, 7, 15, 31, ...). - Gary W. Adamson, May 03 2009

For n>=1, a(n-1) is the number of generalized compositions of n when there are 2^i-1 different types of the part i, (i=1,2,...). - Milan Janjic, Sep 24 2010

Binomial transform of A078057. - R. J. Mathar, Mar 28 2011

Pisano period lengths:  1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... . - R. J. Mathar, Aug 10 2012

a(n) is the diagonal of array A228405. - Richard R. Forberg, Sep 02 2013

From Wolfdieter Lang, Oct 01 2013: (Start)

a(n) appears together with A106731, both interspersed with zeros, in the representation of nonnegative powers of the algebraic number rho(8) = 2*cos(Pi/8) = sqrt(2 + sqrt(2)) of degree 4, which is the length ratio of the smallest diagonal and the side in the regular octagon.

The minimal polynomial for rho(8) is C(8,x) = x^4 - 4*x^2 + 2, hence rho(8)^n = A(n+1)*1 + A(n)*rho(8) + B(n+1)*rho(8)^2 + B(n)*rho(8)^3, n >= 0, with A(2*k) = 0, k >= 0, A(1) = 1, A(2*k+1) = A106731(k-1), k >= 1, and  B(2*k) = 0, k >= 0, B(1) = 0, B(2*k+1) = a(k-1), k >= 1. See also the P. Steinbach reference given under A049310. (End)

The ratio a(n)/A006012(n) converges to 1+sqrt(2). - Karl V. Keller, Jr., May 16 2015

From Tom Copeland, Dec 04 2015: (Start)

An aerated version of this sequence is given by the o.g.f. = 1 / (1 - 4 x^2 + 2 x^4) =  1 / [x^4 a_4(1/x)] = 1 / determinant(I - x M) = exp[-log(1 -4 x + 2 x^4)], where M is the adjacency matrix for the simple Lie algebra B_4 given in A265185 with the characteristic polynomial a_4(x) = x^4 - 4 x^2 + 2 = 2 T_4(x/2) = A127672(4,x), where T denotes a Chebyshev polynomial of the first kind.

A133314 relates a(n) to the reciprocal of the e.g.f. 1 - 4 x + 4 x^2/2!. (End)

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8

A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7

A. Burstein, S. Kitaev and T. Mansour, Independent sets in certain classes of (almost) regular graphs, arXiv:math/0310379 [math.CO], 2003.

Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607. (See Cor. 3.7(e).)

S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.

A. S. Fraenkel, C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discr. Math. 126 (1-3) (1994) 137-149.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 440

J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.

Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.

Index entries for sequences related to poker

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (4,-2).

FORMULA

G.f.: 1/(1-4x+2x^2).

Preceded by 0, this is the binomial transform of the Pell numbers A000129. Its e.g.f. is then exp(2x)sinh(sqrt(2)x)/sqrt(2). - Paul Barry, May 09 2003

a(n) = ((2+sqrt(2))^(n+1)-(2-sqrt(2))^(n+1))/sqrt(8). - Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008, corrected Mar 28 2011

a(n) = (2-sqrt(2))^n*(1/2-sqrt(2)/2)+(2+sqrt(2))^n*(1/2+sqrt(2)/2). - Paul Barry, May 09 2003

a(n) = ceil((2+sqrt(2))*a(n-1)). - Benoit Cloitre, Aug 15 2003

a(n) = U(n, sqrt(2))*sqrt(2)^n. - Paul Barry, Nov 19 2003

a(n) = (1/4)*Sum_{r=1..7} sin(r*Pi/8)*sin(r*Pi/2)*(2cos(r*Pi/8))^(2n+3)). - Herbert Kociemba, Jun 11 2004

a(n) = center term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [A007052(n) a(n) A007052(n)]. E.g., a(3) = 48 since M^3 * [1 1 1] = [34 48 34], where 34 = A007052(3). - Gary W. Adamson, Dec 18 2004

This is the binomial mean transform of A002307. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006

a(2n) = Sum_{r=0..n} 2^(2n-1-r)*(4*binomial(2n-1,2r) + 3*binomial(2n-1,2r+1)) a(2n-1) = Sum_{r=0..n} 2^(2n-2-r)*(4*binomial(2n-2,2r) + 3*binomial(2n-2,2r+1)). - Jeffrey Liese, Oct 12 2006

a(n) = 3*a(n - 1) + a(n - 2) + a(n - 3) + ... + a(0) + 1. - Gary W. Adamson, Feb 18 2011

G.f.: 1/(1 - 4*x + 2*x^2) = 1/( x*(1 + U(0)) ) - 1/x  where U(k)= 1 - 2^k/(1 - x/(x - 2^k/U(k+1) ));(continued fraction 3rd kind, 3-step). - Sergei N. Gladkovskii, Dec 05 2012

G.f.: A(x) = G(0)/(1-2*x) where G(k) = 1 + 2*x/(1 - 2*x - x*(1-2*x)/(x + (1-2*x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 04 2013

G.f.: G(0)/(2*x) - 1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

EXAMPLE

a(3) = 48 = 3 * 4 + 4 + 1 + 1 = 3*a(2) + a(1) + a(0) + 1.

Example for the octagon rho(8) powers: rho(8)^4  = 2 + sqrt(2) = -2*1 + 4*rho(8)^2  = A(5)*1 + A(4)*rho(8) + B(5)*rho(8)^2 + B(4)*rho(8)^3, with a(5) = A106731(1) = -2, B(5) = a(1) = 4, A(4) = 0, B(4) = 0. - Wolfdieter Lang, Oct 01 2013

MAPLE

a:=proc(n) option remember; if n=0 then 1 elif n=1 then 4 else 4*a(n-1)-2*a(n-2); fi; end: seq(a(n), n=0..30); # Wesley Ivan Hurt, Dec 06 2015

MATHEMATICA

a=1; b=0; c=0; lst={}; Do[c=a+b+c; b=a+c; AppendTo[lst, c]; a=b; b=c, {n, 2*4!}]; lst..and/or.. a=1; b=4; lst=Table[c=4*b-2*a; a=b; b=c, {n, 0, 2*4!}]; PrependTo[lst, 4]; PrependTo[lst, 1] (* Vladimir Joseph Stephan Orlovsky, May 21 2010 *)

LinearRecurrence[{4, -2}, {1, 4}, 30] (* Harvey P. Dale, Sep 16 2014 *)

PROG

(PARI) a(n)=polcoeff(1/(1-4*x+2*x^2)+x*O(x^n), n)

(PARI) a(n)=if(n<1, 1, ceil((2+sqrt(2))*a(n-1)))

(Sage) [lucas_number1(n, 4, 2) for n in xrange(1, 24)]# Zerinvary Lajos, Apr 22 2009

(MAGMA) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-8); S:=[ ((4+r)^(1+n)-(4-r)^(1+n))/((2^(1+n))*r): n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Vincenzo Librandi, Mar 27 2011

(MAGMA) [n le 2 select 3*n-2 else 4*Self(n-1)-2*Self(n-2): n in [1..23]];  // Bruno Berselli, Mar 28 2011

(Haskell)

a007070 n = a007070_list !! n

a007070_list = 1 : 4 : (map (* 2) $ zipWith (-)

   (tail $ map (* 2) a007070_list) a007070_list)

-- Reinhard Zumkeller, Jan 16 2012

CROSSREFS

Row sums of A059474. - David W. Wilson, Aug 14 2006

Cf. A007052, A006012 (same recurrence).

Equals 2 * A003480, n>0.

Cf. A007052.

Row sums of A140071.

Cf. A127672, A265185, A133314.

Sequence in context: A047135 A248957 A127359 * A204089 A092489 A094827

Adjacent sequences:  A007067 A007068 A007069 * A007071 A007072 A007073

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane, Mira Bernstein, Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 02:00 EDT 2017. Contains 284182 sequences.