This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059474 Triangle read by rows: T(n,k) = coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ... 3
 1, 2, 2, 4, 6, 4, 8, 16, 16, 8, 16, 40, 52, 40, 16, 32, 96, 152, 152, 96, 32, 64, 224, 416, 504, 416, 224, 64, 128, 512, 1088, 1536, 1536, 1088, 512, 128, 256, 1152, 2752, 4416, 5136, 4416, 2752, 1152, 256, 512, 2560, 6784, 12160, 16032, 16032, 12160, 6784, 2560, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Pascal-like triangle: start with 1 at top; every subsequent entry is the sum of everything above you, plus 1. LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened FORMULA G.f.: 1/(1 - 2*z - 2*w + 2*z*w). T(n,k) = Sum_{j=0..n} (-1)^j*2^(n+k-j)*C(n,j)*C(n+k-j,n). EXAMPLE :  1; :  2,   2; :  4,   6,   4; :  8,  16,  16,   8; : 16,  40,  52,  40,  16; : 32,  96, 152, 152,  96,  32; : 64, 224, 416, 504, 416, 224, 64; ... MAPLE read transforms; SERIES2(1/(1-2*z-2*w+2*z*w), x, y, 12): SERIES2TOLIST(%, x, y, 12); MATHEMATICA T[n_, k_] := Sum[(-1)^j*2^(n + k - j)*Binomial[n, j]*Binomial[n + k - j, n], {j, 0, n}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 04 2017 *) CROSSREFS See A059576 for a similar triangle. T(n,n) gives A084773. Column k=0 gives A000079. Sequence in context: A320409 A096466 A088965 * A252828 A208314 A078099 Adjacent sequences:  A059471 A059472 A059473 * A059475 A059476 A059477 KEYWORD nonn,tabl,easy AUTHOR N. J. A. Sloane, Feb 03, 2001; revised Jun 12 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 02:57 EST 2019. Contains 320364 sequences. (Running on oeis4.)