This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289928 p-INVERT of (1,2,3,5,7,11,13,...); i.e., 1 and the primes (A008578), where p(S) = 1 - S - S^2. 2
 1, 4, 14, 48, 162, 547, 1842, 6206, 20906, 70438, 237326, 799629, 2694199, 9077599, 30585239, 103051135, 347211149, 1169861760, 3941626163, 13280557904, 44746308037, 150764154490, 507971076799, 1711511703373, 5766612400708, 19429501132982, 65464000013233 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial.  Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x.  The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).   Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A289780 for a guide to related sequences. LINKS MATHEMATICA z = 60; s = x + Sum[Prime[k] x^(k + 1), {k, 1, z}]; p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A008578 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x] , 1] (* A289928 *) CROSSREFS Cf. A008578, A289847. Sequence in context: A307127 A248957 A127359 * A007070 A204089 A092489 Adjacent sequences:  A289925 A289926 A289927 * A289929 A289930 A289931 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 15 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 19:35 EDT 2019. Contains 327981 sequences. (Running on oeis4.)