login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207824 Triangle of coefficients of Chebyshev's S(n,x+5) polynomials (exponents of x in increasing order). 7
1, 5, 1, 24, 10, 1, 115, 73, 15, 1, 551, 470, 147, 20, 1, 2640, 2828, 1190, 246, 25, 1, 12649, 16310, 8631, 2400, 370, 30, 1, 60605, 91371, 58275, 20385, 4225, 519, 35, 1, 290376, 501150, 374115, 157800, 41140, 6790, 693, 40, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Riordan array (1/(1-5*x+x^2), x/(1-5*x+x^2)).

Subtriangle of triangle given by (0, 5, -1/5, 1/5, 0, 0, 0, 0, 0, 0, 0, 0...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Unsigned version of A123967 and A179900.

For 1<=k<=n, T(n,k) equals the number of (n-1)-length  words over {0,1,2,3,4,5} containing k-1 letters equal 5 and avoiding 01. -  Milan Janjic, Dec 20 2016

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)

Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.

FORMULA

Recurrence : T(n,k) = 5*T(n-1,k) + T(n-1,k-1) - T(n-2,k).

G.f.: 1/(1-5*x+x^2-y*x).

Diagonal sums are 5^n = A000351(n).

Row sums are A001109(n+1).

T(n,0) = A004254(n+1), T(n+1,n) = 5n+5 = A008587(n+1).

EXAMPLE

Triangle begins :

  1

  5, 1

  24, 10, 1

  115, 73, 15, 1

  551, 470, 147, 20, 1

  2640, 2828, 1190, 246, 25, 1

  12649, 16310, 8631, 2400, 370, 30, 1

  ...

Triangle (0, 5, -1/5, 1/5, 0, 0, 0,...) DELTA (1, 0, 0, 0, ...) begins :

  1

  0, 1

  0, 5, 1

  0, 24, 10, 1

  0, 115, 73, 15, 1

  0, 551, 470, 147, 20, 1

  0, 2640, 2828, 1190, 246, 25, 1

  ...

MATHEMATICA

With[{n = 8}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 5 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

PROG

(PARI) row(n) = Vecrev(polchebyshev(n, 2, (x+5)/2)); \\ Michel Marcus, Apr 26 2018

CROSSREFS

Cf. Triangles of coefficients of Chebyshev's S(n,x+k) polynomials : A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Sequence in context: A146675 A201884 A294138 * A179900 A123967 A162259

Adjacent sequences:  A207821 A207822 A207823 * A207825 A207826 A207827

KEYWORD

easy,nonn,tabl

AUTHOR

Philippe Deléham, Feb 20 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)