This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A207824 Triangle of coefficients of Chebyshev's S(n,x+5) polynomials (exponents of x in increasing order). 7
 1, 5, 1, 24, 10, 1, 115, 73, 15, 1, 551, 470, 147, 20, 1, 2640, 2828, 1190, 246, 25, 1, 12649, 16310, 8631, 2400, 370, 30, 1, 60605, 91371, 58275, 20385, 4225, 519, 35, 1, 290376, 501150, 374115, 157800, 41140, 6790, 693, 40, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Riordan array (1/(1-5*x+x^2), x/(1-5*x+x^2)). Subtriangle of triangle given by (0, 5, -1/5, 1/5, 0, 0, 0, 0, 0, 0, 0, 0...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. Unsigned version of A123967 and A179900. For 1<=k<=n, T(n,k) equals the number of (n-1)-length  words over {0,1,2,3,4,5} containing k-1 letters equal 5 and avoiding 01. -  Milan Janjic, Dec 20 2016 LINKS Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150) Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4. FORMULA Recurrence : T(n,k) = 5*T(n-1,k) + T(n-1,k-1) - T(n-2,k). G.f.: 1/(1-5*x+x^2-y*x). Diagonal sums are 5^n = A000351(n). Row sums are A001109(n+1). T(n,0) = A004254(n+1), T(n+1,n) = 5n+5 = A008587(n+1). EXAMPLE Triangle begins :   1   5, 1   24, 10, 1   115, 73, 15, 1   551, 470, 147, 20, 1   2640, 2828, 1190, 246, 25, 1   12649, 16310, 8631, 2400, 370, 30, 1   ... Triangle (0, 5, -1/5, 1/5, 0, 0, 0,...) DELTA (1, 0, 0, 0, ...) begins :   1   0, 1   0, 5, 1   0, 24, 10, 1   0, 115, 73, 15, 1   0, 551, 470, 147, 20, 1   0, 2640, 2828, 1190, 246, 25, 1   ... MATHEMATICA With[{n = 8}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 5 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *) PROG (PARI) row(n) = Vecrev(polchebyshev(n, 2, (x+5)/2)); \\ Michel Marcus, Apr 26 2018 CROSSREFS Cf. Triangles of coefficients of Chebyshev's S(n,x+k) polynomials : A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5). Sequence in context: A146675 A201884 A294138 * A179900 A123967 A162259 Adjacent sequences:  A207821 A207822 A207823 * A207825 A207826 A207827 KEYWORD easy,nonn,tabl AUTHOR Philippe Deléham, Feb 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)