login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159762 Numerator of Hermite(n, 13/21). 1
1, 26, -206, -51220, -786644, 160251416, 7635636856, -649523935216, -64030044264560, 2918259736005536, 584145244508221216, -10551274514355075904, -5941710299591994211136, -42809778329457726121600, 67014596058555904745723776, 2270994640334597525538334976 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..390

FORMULA

From G. C. Greubel, May 22 2018: (Start)

a(n) = 21^n * Hermite(n,13/21).

E.g.f.: exp(26*x-441*x^2).

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(26/21)^(n-2k)/(k!*(n-2k)!).

a(n+2) = 26*a(n+1) - 882*(n+1)*a(n). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 13/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 13/21)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(26/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018

CROSSREFS

Cf. A009965 (denominators).

Sequence in context: A262107 A245952 A056026 * A100242 A042310 A213123

Adjacent sequences:  A159759 A159760 A159761 * A159763 A159764 A159765

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 21:28 EST 2019. Contains 329937 sequences. (Running on oeis4.)