login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159763 Numerator of Hermite(n, 16/21). 1
1, 32, 142, -51904, -2036660, 117944192, 12755884744, -215972352256, -85665947681648, -1217409408294400, 641059191631501024, 31251445113364640768, -5219510033581154430272, -497789616154448299657216, 43917634328099171108467840, 7552070478774301079638274048 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Robert Israel, Table of n, a(n) for n = 0..391

FORMULA

From Robert Israel, Jan 02 2018: (Start)

a(n) = 21^n * Hermite(n,16/21).

E.g.f.: exp(32*x-441*x^2).

a(n+2) = 32*a(n+1) - 882*(n+1)*a(n). (End)

MAPLE

seq(21^n*orthopoly[H](n, 16/21), n=0..50); # Robert Israel, Jan 02 2018

MATHEMATICA

Numerator[Table[HermiteH[n, 16/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 16/21)) \\ Charles R Greathouse IV, Jan 29 2016

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(32/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // (* G. C. Greubel, May 21 2018 *)

CROSSREFS

Cf. A009965 (denominators).

Sequence in context: A299946 A137740 A221597 * A100164 A048191 A224041

Adjacent sequences:  A159760 A159761 A159762 * A159764 A159765 A159766

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 00:16 EST 2019. Contains 329812 sequences. (Running on oeis4.)