The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004187 a(n) = 7*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1. 61
 0, 1, 7, 48, 329, 2255, 15456, 105937, 726103, 4976784, 34111385, 233802911, 1602508992, 10983760033, 75283811239, 516002918640, 3536736619241, 24241153416047, 166151337293088, 1138818207635569, 7805576116155895, 53500214605455696, 366695926122033977 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}= 0 . A004178 (with initial 0 omitted) is T(1,7). This is a divisibility sequence. For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 7's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011 a(n) and b(n) := A056854(n) are the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 5*(3*a(n))^2 = +4. see the cross-reference to A056854 below. - Wolfdieter Lang, Jun 26 2013 For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4,5,6}. - Milan Janjic, Jan 25 2015 The digital root is A253298, which shares its digital root with A253368. - Peter M. Chema, Jul 04 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38. Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9. D. Birmajer, J. B. Gil, M. D. Weiner, n the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 12 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993 Zvonko Cerin, Some alternating sums of Lucas numbers, Centr. Eur. J. Math. vol 3 no 1 (2005) 1-13. R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014). A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=7, q=-1. M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. Tanya Khovanova, Recursive Sequences W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=9. Index entries for linear recurrences with constant coefficients, signature (7,-1). FORMULA G.f.: x/(1-7*x+x^2). a(n) = F(4*n)/3 = A033888(n)/3, where F=A000045 (the Fibonacci sequence). a(n) = S(2*n-1, sqrt(9))/sqrt(9) = S(n-1, 7); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310. a(n) = sum(i=0..n-1, C(2*n-1-i, i)*5^(n-i-1) ). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004 [A049685(n-1), a(n)] = [1,5; 1,6]^n * [1,0]. - Gary W. Adamson, Mar 21 2008 a(n) = A167816(4*n). - Reinhard Zumkeller, Nov 13 2009 a(n) = (((7+sqrt(45))/2)^n-((7-sqrt(45))/2)^n)/sqrt(45). - Noureddine Chair, Aug 31 2011 a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*6^k. - Philippe Deléham, Feb 10 2012 a(n) = (A081072(n)/3)-1. - Martin Ettl, Nov 11 2012 Product {n >= 1} (1 + 1/a(n)) = 1/5*(5 + 3*sqrt(5)). - Peter Bala, Dec 23 2012 Product {n >= 2} (1 - 1/a(n)) = 1/14*(5 + 3*sqrt(5)). - Peter Bala, Dec 23 2012 From Peter Bala, Apr 02 2015: (Start) Sum_{n >= 1} a(n)*x^(2*n) = -A(x)*A(-x), where A(x) = Sum_{n >= 1} Fibonacci(2*n)*x^n. 1 + 5*Sum_{n >= 1} a(n)*x^(2*n) = F(x)*F(-x) = G(x)*G(-x), where F(x) = 1 + A(x) and G(x) = 1 + 5*A(x). 1 + Sum_{n >= 1} a(n)*x^(2*n) = H(x)*H(-x) = I(x)*I(-x), where H(x) = 1 + Sum_{n >= 1} Fibonacci(2*n + 3)*x^n and I(x) = 1 + x + x*Sum_{n >= 1} Fibonacci(2*n - 1)*x^n. (End) E.g.f.: 2*exp(7*x/2)*sinh(3*sqrt(5)*x/2)/(3*sqrt(5)). - Ilya Gutkovskiy, Jul 03 2016 EXAMPLE a(2) = 7*a(1) - a(0) = 7*7 - 1 = 48. - Michael B. Porter, Jul 04 2016 MAPLE seq(combinat:-fibonacci(4*n)/3, n = 0 .. 30); # Robert Israel, Jan 26 2015 MATHEMATICA LinearRecurrence[{7, -1}, {0, 1}, 30] (* Harvey P. Dale, Jul 13 2011 *) CoefficientList[Series[x/(1 - 7*x + x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 23 2012 *) PROG (MuPAD) numlib::fibonacci(4*n)/3 \$ n = 0..25; // Zerinvary Lajos, May 09 2008 (Sage) [lucas_number1(n, 7, 1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008 (Sage) [fibonacci(4*n)/3 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009 (MAGMA) [Fibonacci(4*n)/3 : n in [0..30]]; // Vincenzo Librandi, Jun 07 2011 (PARI) a(n)=fibonacci(4*n)/3 \\ Charles R Greathouse IV, Mar 09, 2012 (PARI) concat(0, Vec(x/(1-7*x+x^2) + O(x^99))) \\ Altug Alkan, Jul 03 2016 (Maxima) a:0\$ a:1\$ a[n]:=7*a[n-1] - a[n-2]\$ A004187(n):=a[n]\$ makelist(A004187(n), n, 0, 30); /* Martin Ettl, Nov 11 2012 */ (MAGMA) /* By definition: */ [n le 2 select n-1 else 7*Self(n-1)-Self(n-2): n in [1..23]]; // Bruno Berselli, Dec 24 2012 CROSSREFS Cf. A000027, A001906, A001353, A004254, A001109, A049685, A033888. a(n)=sqrt((A056854(n)^2 - 4)/45). Second column of array A028412. Sequence in context: A036829 A164591 A242630 * A180167 A341425 A186653 Adjacent sequences:  A004184 A004185 A004186 * A004188 A004189 A004190 KEYWORD nonn,easy AUTHOR EXTENSIONS Entry improved by comments from Michael Somos and Wolfdieter Lang, Aug 02 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 20:16 EDT 2021. Contains 348091 sequences. (Running on oeis4.)