

A049685


a(n) = L(4n+2)/3, where L=A000032 (the Lucas sequence).


27



1, 6, 41, 281, 1926, 13201, 90481, 620166, 4250681, 29134601, 199691526, 1368706081, 9381251041, 64300051206, 440719107401, 3020733700601, 20704416796806, 141910183877041, 972666870342481
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

In general, sum{k=0..n, binomial(2nk,k)j^(nk)}=(1)^n*U(2n,I*sqrt(j)/2), I=sqrt(1).  Paul Barry, Mar 13 2005
a(n) = L(n,7), where L is defined as in A108299; see also A033890 for L(n,7).  Reinhard Zumkeller, Jun 01 2005
Take 7 numbers consisting of 5 ones together with any two successive terms from this sequence. This set has the property that the sum of their squares is 7 times their product. (R. K. Guy, Oct 12 2005.) See also A111216.
Number of 01avoiding words of length n on alphabet {0,1,2,3,4,5,6} which do not end in 0.  Tanya Khovanova, Jan 10 2007
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal.  John M. Campbell, Jul 08 2011


LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..1193
Tanya Khovanova, Recursive Sequences
J.C. Novelli, J.Y. Thibon, Hopf Algebras of mpermutations,(m+1)ary trees, and mparking functions, arXiv preprint arXiv:1403.5962, 2014
Index entries for linear recurrences with constant coefficients, signature (7,1).


FORMULA

Let q(n, x)=sum(i=0, n, x^(ni)*binomial(2*ni, i)); then q(n, 5)=a(n); a(n) = 7a(n1)  a(n2).  Benoit Cloitre, Nov 10 2002
From Ralf Stephan, May 29 2004: (Start)
a(n+2) = 7a(n+1)  a(n).
G.f.: (1x)/(17x+x^2).
a(n)a(n+3) = 35 + a(n+1)a(n+2). (End)
a(n) = sum_{k=0..n} binomial(n+k, 2k)5^k.  Paul Barry, Aug 30 2004
If another "1" is inserted at the beginning of the sequence, then A002310, A002320 and A049685 begin with 1, 2; 1, 3; and 1, 1; respectively and satisfy a(n+1) = (a(n)^2+5)/a(n1).  Graeme McRae, Jan 30 2005
a(n)=(1)^n*U(2n, I*sqrt(5)/2), U(n, x) Chebyshev polynomial of second kind, I=sqrt(1).  Paul Barry, Mar 13 2005
[a(n), A004187(n+1)] = [1,5; 1,6]^(n+1) * [1,0].  Gary W. Adamson, Mar 21 2008


EXAMPLE

a(3) = L(4 * 3 + 2) / 3 = 843 / 3 = 281.  Indranil Ghosh, Feb 06 2017


PROG

(Sage) [lucas_number1(n, 7, 1)lucas_number1(n1, 7, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Nov 10 2009
(PARI) a(n)=(fibonacci(4*n+1)+fibonacci(4*n+3))/3 \\ Charles R Greathouse IV, Jun 16 2014


CROSSREFS

Row 7 of array A094954.
Cf. A004187.
Cf. similar sequences listed in A238379.
Sequence in context: A015551 A291018 A227214 * A196954 A122371 A083067
Adjacent sequences: A049682 A049683 A049684 * A049686 A049687 A049688


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling


STATUS

approved



