login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028412 Rectangular array of numbers Fibonacci(m(n+1))/Fibonacci(m), m>=1, n>=0, read by antidiagonals. 20
1, 1, 1, 1, 3, 2, 1, 4, 8, 3, 1, 7, 17, 21, 5, 1, 11, 48, 72, 55, 8, 1, 18, 122, 329, 305, 144, 13, 1, 29, 323, 1353, 2255, 1292, 377, 21, 1, 47, 842, 5796, 15005, 15456, 5473, 987, 34, 1, 76, 2208, 24447, 104005, 166408, 105937, 23184, 2584, 55, 1, 123, 5777 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Every integer-valued quotient of two Fibonacci numbers is in this array. - Clark Kimberling, Aug 28 2008

Not only does 5 divide row 5, but 50 divides (-5 + row 5), as in A214984. - Clark Kimberling, Nov 02 2012

REFERENCES

A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 142.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1829

I. Strazdins, Lucas factors and a Fibonomial generating function, in Applications of Fibonacci numbers, Vol. 7 (Graz, 1996), 401-404, Kluwer Acad. Publ., Dordrecht, 1998.

FORMULA

T(n, m) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_m>=0, C(n-i_m, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{m-1}, i_m) ] ... ]].

G.f. for column m>=1: 1/(1 - Lucas(m)*x + (-1)^m*x^2), where Lucas(m) = A000204(m). - Paul D. Hanna, Jan 28 2012

EXAMPLE

   1   1    1      1       1        1

   1   3    4      7      11       18

   2   8   17     48     122      323

   3  21   72    329    1353     5796

   5  55  305   2255   15005   104005

   8 144 1292  15456  166408  1866294

  13 377 5473 105937 1845493 33489287

  ...

MATHEMATICA

max = 11; col[m_] := CoefficientList[ Series[ 1/(1 - LucasL[m]*x + (-1)^m*x^2), {x, 0, max}], x]; t = Transpose[ Table[ col[m], {m, 1, max}]] ; Flatten[ Table[ t[[n - m + 1, m]], {n, 1, max }, {m, n, 1, -1}]] (* Jean-Fran├žois Alcover, Feb 21 2012, after Paul D. Hanna *)

f[n_] := Fibonacci[n]; t[m_, n_] := f[m*n]/f[n]

TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]] (* array *)

t = Flatten[Table[t[k, n + 1 - k], {n, 1, 120}, {k, 1, n}]] (* sequence *) (* Clark Kimberling, Nov 02 2012 *)

PROG

(PARI) {T(n, m)=polcoeff(1/(1 - Lucas(m)*x + (-1)^m*x^2 +x*O(x^n)), n)}

CROSSREFS

Columns include A000045, A001906, A001076, A004187, A049666, A049660, A049667, A049668, A049669, A049670. Rows include (essentially) A000032, A047946, A083564, A103226. Main diagonal is A051294.  Transpose is A214978.

Sequence in context: A092486 A159966 A119263 * A156699 A245183 A262347

Adjacent sequences:  A028409 A028410 A028411 * A028413 A028414 A028415

KEYWORD

tabl,nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Erich Friedman, Jun 03 2001

Edited by Ralf Stephan, Feb 03 2005

Better description from Clark Kimberling, Aug 28 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 00:35 EDT 2017. Contains 290855 sequences.