This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033888 a(n) = Fibonacci(4n). 23
 0, 3, 21, 144, 987, 6765, 46368, 317811, 2178309, 14930352, 102334155, 701408733, 4807526976, 32951280099, 225851433717, 1548008755920, 10610209857723, 72723460248141, 498454011879264, 3416454622906707, 23416728348467685, 160500643816367088, 1100087778366101931, 7540113804746346429 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS (x,y)=(a(n),a(n+1)) are solutions of (x+y)^2/(1+xy)=9, the other solutions are in A033890. - Floor van Lamoen, Dec 10 2001 Sequence A033888 provides half of the solutions to the equation 5*x^2 + 4 is a square. The other half are found in A033890. Lim. n-> Inf. a(n)/a(n-1) = phi^4 = (7+3*Sqrt(5))/2. - Gregory V. Richardson, Oct 13 2002 Fibonacci numbers divisible by 3. - Reinhard Zumkeller, Aug 20 2011 LINKS Nathaniel Johnston, Table of n, a(n) for n = 0..300 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (7,-1). FORMULA a(n) = 7*a(n-1) - a(n-2). a(n) = [(7+3*sqrt(5))^(n-1) - (7-3*sqrt(5))^(n-1)] / ((2^(n-1))*sqrt(5)). - Gregory V. Richardson, Oct 13 2002 a(n) = Sum_{k=0..n} F(3n-k)*binomial(n, k). - Benoit Cloitre, Jun 07 2004 Lucas(2n) * Lucas(n) * Fibonacci(n). - Ralf Stephan, Sep 25 2004 G.f.: 3*x/(1-7*x+x^2). - Philippe Deléham, Nov 17 2008 a(n) = 3*A004187(n). - R. J. Mathar, Sep 03 2010 a(n) Fibonacci[(8 n + 5)] modulo Fibonacci[(8 n + 1)]. -Artur Jasinski, Nov 15 2011 EXAMPLE G.f. = 3*x + 21*x^2 + 144*x^3 + 987*x^4 + 6765*x^5 + 46368*x^6 + ... MAPLE A033888:=n->combinat[fibonacci](4*n): seq(A033888(n), n=0..30); # Wesley Ivan Hurt, Apr 26 2017 MATHEMATICA Table[Fibonacci[4*n], {n, 0, 14}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *) Table[Mod[Fibonacci[(8 n + 5)] , Fibonacci[(8 n + 1)]], {n, 1, 10}] (* Artur Jasinski, Nov 15 2011 *) PROG (Mupad) numlib::fibonacci(n*4) \$ n = 0..30; - Zerinvary Lajos, May 08 2008 (Sage) [lucas_number1(n, 3, 1)*lucas_number2(n, 3, 1) for n in xrange(0, 21)] # Zerinvary Lajos, Jun 28 2008 (Sage) [fibonacci(4*n) for n in xrange(0, 20)] # Zerinvary Lajos, May 15 2009 (MAGMA) [ Fibonacci(4*n): n in [0..100]]; // Vincenzo Librandi, Apr 15 2011 (PARI) a(n)=fibonacci(4*n) \\ Charles R Greathouse IV, Feb 03 2014 CROSSREFS Cf. A000045. Fourth column of array A102310. Sequence in context: A137969 A054419 A228115 * A141492 A243397 A173350 Adjacent sequences:  A033885 A033886 A033887 * A033889 A033890 A033891 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.