This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180167 a(0) = 1, a(1) = 7; a(n)= 6*a(n-1) + 6*a(n-2) for n>1. 2
 1, 7, 48, 330, 2268, 15588, 107136, 736344, 5060880, 34783344, 239065344, 1643092128, 11292944832, 77616221760, 533454999552, 3666427327872, 25199293964544, 173194327754496, 1190361730314240, 8181336348412416, 56230188472359936, 386469148924634112 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, J. Int. Seq. 18 (2015) # 15.4.7. Index entries for linear recurrences with constant coefficients, signature (6,6). FORMULA G.f.: (1 + x)/(1 - 6*x - 6*x^2); = INVERT transform of A180033 a(n) = ((3-sqrt(15))^n*(-4+sqrt(15))+(3+sqrt(15))^n*(4+sqrt(15)))/(2*sqrt(15)). - Alexander R. Povolotsky, Aug 22 2010, corrected by Colin Barker, May 13 2016 a(n) = A057089(n)+A057089(n-1). - R. J. Mathar, Apr 04 2012 E.g.f.: (4*sqrt(15)*sinh(sqrt(15)*x) + 15*cosh(sqrt(15)*x))*exp(3*x)/15. - Ilya Gutkovskiy, May 13 2016 EXAMPLE a(4) = 2268 = 6*a(3) + 6*a(2) = 6*330 + 6*48. Using the INVERT transform operation, a(3) = 330 = (205, 35, 6, 1) dot (1, 1, 7, 48) = (205 + 35 + 42 + 48), where (1, 6, 35, 205, 1200,...) = A180033. MAPLE G.f. = 1 + 7*x + 48*x^2 + 330*x^3 + 2268*x^4 + 15588*x^5 + 107136*x^6 + ... PROG (PARI) Vec((1 + x)/(1 - 6*x - 6*x^2) + O(x^50)) \\ Colin Barker, May 13 2016 CROSSREFS Cf. A180033. Sequence in context: A164591 A242630 A004187 * A186653 A231378 A024092 Adjacent sequences:  A180164 A180165 A180166 * A180168 A180169 A180170 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Aug 14 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 12:47 EDT 2019. Contains 328257 sequences. (Running on oeis4.)